Urban crowd-sourcing has become a popular paradigm to harvest spatial information about our evolving cities directly from citizens. OpenStreetMap is a successful example of such paradigm, with an accuracy of its user-generated content comparable to that of curated databases (e.g., Ordnance Survey). Coverage is however low and most importantly non-uniformly distributed across the city. Being able to model the spontaneous growth of digital information in these domains is required, so to be able to plan interventions aimed at gathering content about areas that would otherwise be neglected. Inspired by models of physical urban growth developed by urban planners, we build a model of digital growth of crowd-sourced spatial information that is both easy to interpret and dynamic, so to be able to determine what factors impact growth and how these change over time. We build and test the model against five years of OpenStreetMap data for the city of London, UK. We then run the model against two other cities, chosen for their different physical and digital growth's characteristics, so to stress-test the model. We conclude with a discussion of the implications of this work on both developers and users of urban crowd-sourcing applications.
Within the remit of 'Data for Development' there have been a number of promising recent works that investigate the use of mobile phone Call Detail Records (CDRs) to estimate the spatial distribution of poverty or socio-economic status. The methods being developed have the potential to offer immense value to organisations and agencies who currently struggle to identify the poorest parts of a country, due to the lack of reliable and up to date survey data in certain parts of the world. However, the results of this research have thus far only been presented in isolation rather than in comparison to any alternative approach or benchmark. Consequently, the true practical value of these methods remains unknown.Here, we seek to allay this shortcoming, by proposing two baseline poverty estimators grounded on concrete usage scenarios: one that exploits correlation with population density only, to be used when no poverty data exists at all; and one that also exploits spatial autocorrelation, to be used when poverty data has been collected for a few regions within a country. We then compare the predictive performance of these baseline models with models that also include features derived from CDRs, so to establish their real added value. We present extensive analysis of the performance of all these models on data acquired for two developing countries -Senegal and Ivory Coast. Our results reveal that CDR-based models do provide more accurate estimates in most cases; however, the improvement is modest and more significant when estimating (extreme) poverty intensity rates rather than mean wealth.
Abstract-In many developing countries there remains a limited view on the socioeconomic status of the population, owing to the high cost associated with detailed and comprehensive surveying. This situation has encouraged a number of researchers to attempt to exploit alternative sources of data in order to derive estimates, including mobile phone data, which offers a rich depiction of the social dynamics of a population. Meanwhile, from the level of the individual to the city, access to information has been posited as an important factor in determining prosperity and economic development. In this paper we explore this relationship by simulating the flow of information through a mobile phone call graph in two sub-Saharan countries. We find a strong relationship between a location's average wealth and its access to information as determined by the simulations in one country, and a weaker correlation in the second country. This finding adds to recent evidence that mining patterns from mobile phone data represents a viable means to estimate poverty in places where traditionally derived estimates are lacking. We further investigate the impact of various factors on the empirical results in order to explain the variation between the two countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.