Sharing economy platforms have become extremely popular in the last few years, and they have changed the way in which we commute, travel, and borrow among many other activities. Despite their popularity among consumers, such companies are poorly regulated. For example, Airbnb, one of the most successful examples of sharing economy platform, is often criticized by regulators and policy makers. While, in theory, municipalities should regulate the emergence of Airbnb through evidence-based policy making, in practice, they engage in a false dichotomy: some municipalities allow the business without imposing any regulation, while others ban it altogether. That is because there is no evidence upon which to draft policies. Here we propose to gather evidence from the Web. After crawling Airbnb data for the entire city of London, we find out where and when Airbnb listings are offered and, by matching such listing information with census and hotel data, we determine the socio-economic conditions of the areas that actually benefit from the hospitality platform. The reality is more nuanced than one would expect, and it has changed over the years. Airbnb demand and offering have changed over time, and traditional regulations have not been able to respond to those changes. That is why, finally, we rely on our data analysis to envision regulations that are responsive to real-time demands, contributing to the emerging idea of "algorithmic regulation".
Measuring socioeconomic deprivation of cities in an accurate and timely fashion has become a priority for governments around the world, as the massive urbanization process we are witnessing is causing high levels of inequalities which require intervention. Traditionally, deprivation indexes have been derived from census data, which is however very expensive to obtain, and thus acquired only every few years. Alternative computational methods have been proposed in recent years to automatically extract proxies of deprivation at a fine spatio-temporal level of granularity; however, they usually require access to datasets (e.g., call details records) that are not publicly available to governments and agencies. To remedy this, we propose a new method to automatically mine deprivation at a fine level of spatio-temporal granularity that only requires access to freely available user-generated content. More precisely, the method needs access to datasets describing what urban elements are present in the physical environment; examples of such datasets are Foursquare and OpenStreetMap. Using these datasets, we quantitatively describe neighborhoods by means of a metric, called {\em Offering Advantage}, that reflects which urban elements are distinctive features of each neighborhood. We then use that metric to {\em (i)} build accurate classifiers of urban deprivation and {\em (ii)} interpret the outcomes through thematic analysis. We apply the method to three UK urban areas of different scale and elaborate on the results in terms of precision and recall.Comment: CSCW'15, March 14 - 18 2015, Vancouver, BC, Canad
In the hospitality industry, the room and apartment sharing platform of Airbnb has been accused of unfair competition. Detractors have pointed out the chronic lack of proper legislation. Unfortunately, there is little quantitative evidence about Airbnb's spatial penetration upon which to base such a legislation. In this study, we analyze Airbnb's spatial distribution in eight U.S. urban areas, in relation to both geographic, socio-demographic, and economic information. We find that, despite being very different in terms of population composition, size, and wealth, all eight cities exhibit the same pattern: that is, areas of high Airbnb presence are those occupied by the "talented and creative" classes, and those that are close to city centers. This result is consistent so much so that the accuracy of predicting Airbnb's spatial penetration is as high as 0.725.
Volunteered Geographical Information (VGI) has been extensively studied in terms of its quality and completeness in the past. However, little attention is given to understanding what factors, beyond individuals' expertise, contribute to the success of VGI. In this chapter we ask whether society and its characteristics such as socio-economic factors have an impact on what part of the physical world is being digitally mapped. This question is necessary, so to understand where crowdsourced map information can be relied upon (and crucially where not), with direct implications on the design of applications that rely on having complete and unbiased map knowledge. To answer the above questions, we study over 6 years of crowd-sourced contributions to OpenStreetMap (OSM) a successful example of the VGI paradigm. We measure the positional and thematic accuracy as well as completeness of this information and quantify the role of society on the state of this digital production. Finally we quantify the effect of social engagement as a method of intervention for improving users' participation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.