The green-fluorescent proteins (GFP) are a unique class of proteins involved in bioluminescence of many cnidaria. The GFPs serve as energy-transfer acceptors, receiving energy from either a luciferase-oxyluciferin complex or a Ca(2+)-activated photoprotein, depending on the organism. Upon mechanical stimulation of the organism, GFP emits green light spectrally identical to its fluorescence emission. These highly fluorescent proteins are unique due to the nature of the covalently attached chromophore, which is composed of modified amino acid residues within the polypeptide. This report describes the characterization of the Aequorea victoria GFP chromophore which is released as a hexapeptide upon digestion of the protein with papain. The chromophore is formed upon cyclization of the residues Ser-dehydroTyr-Gly within the polypeptide. The chromophore structure proposed here differs from that described by Shimomura [(1979) FEBS Lett. 104, 220] in a number of ways.
Abstract— In the jellyfish Aequorea, the green‐fluorescent protein (GFP) functions as the in vivo bio‐luminescence emitter via energy transfer from the photoprotein aequorin. Accumulated evidence has indicated that the Aequorea GFP is a relatively inflexible protein. Present evidence, however, indicates that the chromophore environment is readily accessible to a variety of external perturbants. Native Aequorea GFP has an absorbance maximum at 395 nm and a shoulder at 470 nm. In low ionic strength buffer at neutral pH and room temperature the 395/470 nm absorbance ratio is about 2.0. We show that this ratio is highly variable depending upon temperature, ionic strength, protein concentration, and pH. A maximum ratio of 6.5 (at a protein concentration of 18.6 mg/m/) and minimum of 0.42 (at a pH of 12.2) have been measured. In the latter case, the resulting absorption and excitation spectra resemble those of Renilla GFP in spectral shape (but not wavelength maximum). In all cases as the perturbant is varied the resulting spectra pass through a sharp isosbestic point, suggesting a relatively simple two‐state mechanism. These spectral perturbations are fully reversible. On the basis of these results, we suggest that the chromophore binding site is conformationally flexible. pH‐Dependent changes in the near‐UV and visible circular dichroism spectra plus spectrophotometric titration of tyrosine residues lend additional support to this hypothesis.
Abstract— Spectral properties of guanidine‐denaturated and pronase‐digested green‐fluorescent proteins (GFP) from two species of bioluminescent coelenterates have been investigated. Spectrophotometric titrations of Renilla and Aequorea GFP, following denaturation in 6M guanidine HCl at elevated temperature, revealed identical absorption peaks in acid (383–384 nm) and in alkali (447–448 nm) and a single isosbestic point in the visible region at 405 nm. Both proteins exhibited a spectrophotometric pK. of 8.1 in guanidine ‐HCl. Pronase digestion of the heat‐denaturated GFP's generated a methanol‐soluble blue‐fluorescent peptide with identical fluorescence emission spectra (λmax= 430 nm, uncorrected; φf1= 0.003) for both coelenterate species. These data suggest that the large absorption differences between native Renilla and Aequorea GFP molecules result from unique protein environments imported to a common chromophore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.