A complementary DNA for the Aequorea victoria green fluorescent protein (GFP) produces a fluorescent product when expressed in prokaryotic (Escherichia coli) or eukaryotic (Caenorhabditis elegans) cells. Because exogenous substrates and cofactors are not required for this fluorescence, GFP expression can be used to monitor gene expression and protein localization in living organisms.
The green-fluorescent proteins (GFP) are a unique class of proteins involved in bioluminescence of many cnidaria. The GFPs serve as energy-transfer acceptors, receiving energy from either a luciferase-oxyluciferin complex or a Ca(2+)-activated photoprotein, depending on the organism. Upon mechanical stimulation of the organism, GFP emits green light spectrally identical to its fluorescence emission. These highly fluorescent proteins are unique due to the nature of the covalently attached chromophore, which is composed of modified amino acid residues within the polypeptide. This report describes the characterization of the Aequorea victoria GFP chromophore which is released as a hexapeptide upon digestion of the protein with papain. The chromophore is formed upon cyclization of the residues Ser-dehydroTyr-Gly within the polypeptide. The chromophore structure proposed here differs from that described by Shimomura [(1979) FEBS Lett. 104, 220] in a number of ways.
The green-fluorescent protein (GFP) that functions as a bioluminescence energy transfer acceptor in the jellyfish Aequorea has been renatured with up to 90% yield following acid, base, or guanidine denaturation. Renaturation, following pH neutralization or simple dilution of guanidine, proceeds with a half-recovery time of less than 5 min as measured by the return of visible fluorescence. Residual unrenatured protein has been quantitatively removed by chromatography on Sephadex G-75. The chromatographed, renatured GFP has corrected fluorescence excitation and emission spectra identical with those of the native protein at pH 7.0 (excitation lambda max = 398 nm; emission lambda max = 508 nm) and also at pH 12.2 (excitation lambda max = 476 nm; emission lambda max = 505 nm). With its peak position red-shifted 78 nm at pH 12.2, the Aequorea GFP excitation spectrum more closely resembles the excitation spectra of Renilla (sea pansy) and Phialidium (hydromedusan) GFPs at neutral pH. Visible absorption spectra of the native and renatured Aequorea green-fluorescent proteins at pH 7.0 are also identical, suggesting that the chromophore binding site has returned to its native state. Small differences in far-UV absorption and circular dichroism spectra, however, indicate that the renatured protein has not fully regained its native secondary structure.
Abstract— In the jellyfish Aequorea, the green‐fluorescent protein (GFP) functions as the in vivo bio‐luminescence emitter via energy transfer from the photoprotein aequorin. Accumulated evidence has indicated that the Aequorea GFP is a relatively inflexible protein. Present evidence, however, indicates that the chromophore environment is readily accessible to a variety of external perturbants. Native Aequorea GFP has an absorbance maximum at 395 nm and a shoulder at 470 nm. In low ionic strength buffer at neutral pH and room temperature the 395/470 nm absorbance ratio is about 2.0. We show that this ratio is highly variable depending upon temperature, ionic strength, protein concentration, and pH. A maximum ratio of 6.5 (at a protein concentration of 18.6 mg/m/) and minimum of 0.42 (at a pH of 12.2) have been measured. In the latter case, the resulting absorption and excitation spectra resemble those of Renilla GFP in spectral shape (but not wavelength maximum). In all cases as the perturbant is varied the resulting spectra pass through a sharp isosbestic point, suggesting a relatively simple two‐state mechanism. These spectral perturbations are fully reversible. On the basis of these results, we suggest that the chromophore binding site is conformationally flexible. pH‐Dependent changes in the near‐UV and visible circular dichroism spectra plus spectrophotometric titration of tyrosine residues lend additional support to this hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.