Quantitative determination of surface coverage, film thickness and molecular orientation of DNA oligomers covalently attached to aminosilane self-assembled monolayers has been obtained using complementary infrared and photoelectron studies. Spectral variations between surface immobilized oligomers of the different nucleic acids are reported for the first time. Carbodiimide condensation was used for covalent attachment of phosphorylated oligonucleotides to silanized aluminum substrates. Fourier transform infrared (FTIR) spectroscopy and x-ray photoelectron spectroscopy (XPS) were used to characterize the surfaces after each modification step. Infrared reflection-absorption spectroscopy of covalently bound DNA provides orientational information. Surface density and layer thickness are extracted from XPS data. The surface density of immobilized DNA, 2-3 (×10 13 ) molecules cm −2 , was found to depend on base composition. Comparison of antisymmetric to symmetric phosphate stretching band intensities in reflection-absorption spectra of immobilized DNA and transmission FTIR spectra of DNA in KBr pellet indicates that the sugar-phosphate backbone is predominantly oriented with the sugar-phosphate backbone lying parallel to the surface, in agreement with the 10-20Å DNA film thickness derived from XPS intensities.
We use a new exploratory model that simulates the evolution of sandy coastlines over decadal to centennial timescales to examine the behavior of crenulate-shaped bays forced by differing directional wave climates. The model represents the coastline as a vector in a Cartesian reference frame, and the shoreface evolves relative to its local orientation, allowing simulation of coasts with high planform-curvature. Shoreline change is driven by gradients in alongshore transport following newly developed algorithms that facilitate dealing with high planform-curvature coastlines. We simulated the evolution of bays from a straight coast between two fixed headlands with no external sediment inputs to an equilibrium condition (zero net alongshore sediment flux) under an ensemble of directional wave climate conditions. We find that planform bay relief increases with obliquity of the mean wave direction, and decreases with the spread of wave directions. Varying bay size over 2 orders of magnitude (0.1-16 km), the model predicts bay shape to be independent of bay size. The time taken for modeled bays to attain equilibrium was found to scale with the square of the distance between headlands, so that, all else being equal, small bays are likely to respond to and recover from perturbations more rapidly (over just a few years) compared to large bays (hundreds of years). Empirical expressions predicting bay shape may be misleading if used to predict their behavior over planning timescales.
An exciting new class of hexagonal mesoporous organosilicas containing multiple organic bridging groups within the pore walls is introduced. These high-surface-area organic−inorganic materials combine the ordered microstructure of mesoporous silicas and the chemical functionality of organic copolymers.
On 22 May 2011 a massive tornado tore through Joplin, Mo., killing 158 people. With winds blowing faster than 200 miles per hour, the tornado was the most deadly in the United States since modern record keeping began in the 1950s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.