Ovarian follicle development is a complex process that begins with the establishment of what is thought to be a finite pool of primordial follicles and culminates in either the atretic degradation of the follicle or the release of a mature oocyte for fertilization. This review highlights the many advances made in understanding these events using transgenic mouse models. Specifically, this review describes the ovarian phenotypes of mice with genetic mutations that affect ovarian differentiation, primordial follicle formation, follicular growth, atresia, ovulation and corpus luteum (CL) formation. In addition, this review describes the phenotypes of mice with mutations in a variety of genes, which affect the hormones that regulate folliculogenesis. Because studies using transgenic animals have revealed a variety of reproductive abnormalities that resemble many reproductive disorders in women, it is likely that studies using transgenic mouse models will impact our understanding of ovarian function and fertility in women.
Objective-Hot flashes disrupt the lives of millions of women each year. Although hot flashes are a public health concern, little is known about risk factors that predispose women to hot flashes. Thus, the objective of this study was to examine whether sex steroid hormone levels and genetic polymorphisms in hormone biosynthesis and degradation enzymes are associated with the risk of hot flashes.Methods-In a cross-sectional study design, midlife women aged 45 to 54 years (n=639) were recruited from Baltimore and its surrounding counties. Participants completed a questionnaire and donated a blood sample for steroid hormone analysis and genotyping. The associations between genetic polymorphisms and hormone levels, as well as the associations between genetic polymorphisms, hormone levels, and hot flashes were examined using statistical models.Results-A polymorphism in CYP1B1 was associated with lower dehydroepiandrosterone-sulfate (DHEA-S) and progesterone levels, while a polymorphism in CYP19 (aromatase) was associated with higher testosterone and DHEA-S levels. Lower progesterone and sex hormone binding globulin levels, lower free estradiol index, and a higher ratio of total androgens to total estrogens were associated with the experiencing of hot flashes. A polymorphism in CYP1B1 and a polymorphism in 3βHSD were both associated with hot flashes.Conclusion-Some genetic polymorphisms may be associated with altered levels of hormones in midlife women. Further, selected genetic polymorphisms and altered hormone levels may be associated with the risk of hot flashes in midlife women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.