Targeted delivery of therapeutic and imaging agents in the vascular compartment represents a significant hurdle in using nanomedicine for treating hemorrhage, thrombosis, and atherosclerosis. While several types of nanoparticles have been developed to meet this goal, their utility is limited by poor circulation, limited margination, and minimal targeting. Platelets have an innate ability to marginate to the vascular wall and specifically interact with vascular injury sites. These platelet functions are mediated by their shape, flexibility, and complex surface interactions. Inspired by this, we report the design and evaluation of nanoparticles that exhibit platelet-like functions including vascular injury site-directed margination, site-specific adhesion, and amplification of injury site-specific aggregation. Our nanoparticles mimic four key attributes of platelets, (i) discoidal morphology, (ii) mechanical flexibility, (iii) biophysically and biochemically mediated aggregation, and (iv) heteromultivalent presentation of ligands that mediate adhesion to both von Willebrand Factor and collagen, as well as specific clustering to activated platelets. Platelet-like nanoparticles (PLNs) exhibit enhanced surface-binding compared to spherical and rigid discoidal counterparts and site-selective adhesive and platelet-aggregatory properties under physiological flow conditions in vitro. In vivo studies in a mouse model demonstrated that PLNs accumulate at the wound site and induce ∼65% reduction in bleeding time, effectively mimicking and improving the hemostatic functions of natural platelets. We show that both the biochemical and biophysical design parameters of PLNs are essential in mimicking platelets and their hemostatic functions. PLNs offer a nanoscale technology that integrates platelet-mimetic biophysical and biochemical properties for potential applications in injectable synthetic hemostats and vascularly targeted payload delivery.
Whole blood or red blood cell (RBC) transfusions are highly significant, clinically, for blood replacement therapies in traumatic injuries, presurgical conditions, and anemias. However, natural RBC-based products suffer from limited shelf life due to pathological contamination and also present risks of refractoriness, graft-versus-host disease, immunosuppression, and acute lung injury. These issues can be only partially resolved by pathogen reduction technologies, serological blood testing, leukoreduction, and specialized storage; hence, they severely affect the efficacy and safety of the blood products. Consequently, there is a significant interest in synthetic RBC analogues that can mimic its oxygen-transport properties while allowing convenient manufacture, reproducibility, long shelf life, and reduced biological risks. To this end, the current Review provides a comprehensive description and discussion of the various research approaches and current state-of-the-art in synthetically mimicking RBC's oxygen-carrying biochemical properties, as well as the biophysical parameters (shape, size and mechanical modulus) that influence RBCs' hemodynamic transport properties in blood flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.