Rapid evolutionary adaptations and phenotypic plasticity have been suggested to be two important, but not mutually exclusive, mechanisms contributing to the spread of invasive species. Adaptive evolution in invasive plants has been shown to occur at large spatial scales to different climatic regions, but local adaptation at a smaller scale, e.g. to different habitats within a region, has rarely been studied. Therefore, we performed a case study on invasive Mahonia populations to investigate whether local adaptation may have contributed to their spread. We hypothesized that the invasion success of these populations is promoted by adaptive differentiation in response to local environmental conditions, in particular to the different soils in these habitats. To test this hypothesis, we carried out a reciprocal transplantation experiment in the field using seedlings from five Mahonia populations in Germany that are representative for the range of habitats invaded, and a greenhouse experiment that specifically compared the responses to the different soils of these habitats. We found no evidence for local adaptation of invasive Mahonia populations because seedlings from all populations responded similarly to different habitats and soils. In a second greenhouse experiment we examined genetic variation within populations, but seedlings from different maternal families did not vary in their responses to soil conditions. We therefore suggest that local adaptation of seedlings does not play a major role for the invasion success of Mahonia populations and that phenotypic plasticity, instead, could be an important trait in this stage of the life cycle.
Hybridization has been repeatedly put forward to explain the invasiveness of Rhododendron ponticum L. in the British Isles. The present study investigates the pattern of ecotypic differentiation and hybridization among native North American R. catawbiense and R. maximum, native R. ponticum from Georgia and Spain, and invasive R. ponticum from Ireland and aims to assess the contribution of hybridization for Rhododendron invasion in the British Isles. Six populations per taxon were analyzed with AFLP markers for genetic dissimilarity, subjected to germination and growth experiments, and tested for frost hardiness. We assessed variation in morphological and ecological characteristics to identify traits displaying evidence of hybridization, thus, promoting invasiveness. Molecular marker analyses revealed a clear distinction between North American R. catawbiense and R. maximum on the one hand, and all R. ponticum populations on the other hand, displaying a complete intermixture of native Spanish and invasive Irish populations. Multivariate analyses of traits revealed leaf length–width ratio, relative growth rates (RGRs) in leaf length, root biomass, and shoot–root ratio to significantly discriminate between the different taxa and unequivocally assigned invasive Irish R. ponticum to the Spanish phenotypes. While the Irish R. ponticum had similar growth traits as conspecific native R. ponticum provenances, germination and biomass allocation were more similar to North American R. catawbiense and R. maximum. Hybridization did not contribute to explaining invasiveness of R. ponticum in Ireland. The similarity in germination and biomass allocation of invasive Irish R. ponticum and North American species has evolved independently and can more probably be attributed to an independent shift within the Ponticum cluster in Ireland.
Invasive populations often grow more vigorously than conspecific populations in the native range. This has frequently been attributed to evolutionary changes resulting either from founder effects, or from natural selection owing to enemy release. Another mechanism contributing to evolutionary change has largely been neglected in the past: Many invasive plant species do actually descend from cultivated plants and were therefore subject to breeding, including hybridization and artificial selection. In a common garden experiment, we compared invasive Central European populations of the ornamental shrub, Mahonia, with native populations of its putative parental species, Mahonia aquifolium and M. repens, from North America. We hypothesized that plants of invasive populations show increased growth and retained high levels of heritable variation in phenotypic traits. Indeed, invasive Mahonia plants grew larger in terms of stem length, number of leaves and aboveground biomass than either of the two native species, which did not differ significantly from each other. Since there are no hints on release of invasive Mahonia populations from natural enemies, it is likely that hybridization and subsequent selection by breeders have lead to an evolutionary increase of plant vigour in the introduced range. Further on, heritable variation was not consistently reduced in invasive populations compared with populations of the two native species. We suggest that interspecific hybridization among the Mahonia species has counteracted the harmful effects of genetic bottlenecks often associated with species introductions. Based on this case study, we conclude that, more attention has to be paid on the role of plant breeding when assessing the mechanisms behind successful plant invasions in future.
Microsatellite loci were isolated from a Mahonia aquifolium cultivar. We describe the variability of 10 loci in invasive European and native North American M. aquifolium and their transspecies amplification in native Mahonia repens and Mahonia pinnata from North America and one species of the related genus Berberis ( Berberis vulgaris ), native to Europe. The markers should be useful to reveal the genetic origin of invasive Mahonia populations and differences in the genetic make up between invasive and native populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.