The efficiency of Myrtacine(®) New Generation on P. acnes biofilm alone or combined with antibiotics was demonstrated and can lead to consider it as a potent adjunctive product efficient during the antibiotic course for acne vulgaris treatment.
This study aimed at evaluating the antiproliferative, antibacterial, and anti-inflammatory properties of an ethanolic myrtle extract (Myrtacine®) in vitro, characterising its potential active compounds (myrtucommulones A and B') by structural analysis, and evaluating their biological activity. Antiproliferative activity was assessed by the BrdU incorporation assay in HaCat keratinocytes and inhibitory and bactericidal activities against P. ACNES strains by measuring the minimal inhibitory concentration (MIC) and D value. Anti-inflammatory effect was evaluated by measuring 6-keto-prostaglandin F1 α and [³H]-arachidonic acid metabolite production in keratinocytes stimulated for inflammation. Myrtacine® inhibited keratinocyte proliferation by 27 % and 76 % at 1 and 3 µg/mL, respectively (p < 0.001). A comparable effect, though less marked, was observed with 5 µg/mL myrtucommulones A and B' (-36 % and -28 %, respectively). Myrtacine® inhibited erythromycin-sensible and -resistant P. ACNES strains growth with MICs of 4.9 µg/mL and 2.4 µg/mL, respectively. Myrtucommulone B' and myrtucommulone A displayed a similar inhibitory activity against both strains (for both strains, MIC = 1.2 µg/mL and about 0.5 µg/mL, respectively). At 3 and 10 µg/mL, Myrtacine® significantly decreased all metabolite production from cyclooxygenase (81 % and 107 %, p < 0.0001) and lipoxygenase (52 % and 95 %, p < 0.001) pathways. Finally, Myrtacine® exhibited a concentration-dependent anti-lipase activity at 100 µg/mL and 1 mg/mL, as it decreased lipase activity by respectively 53 % and 100 % (p < 0.01 for both). In conclusion, in vitro, Myrtacine® demonstrated antiproliferative, antibacterial, and anti-inflammatory properties that may be of value to exert a global action in the treatment of acne lesions.
Phytochemical extracts are highly complex chemical mixtures. In the context of an increasing demand for phytopharmaceuticals, assessment of the phytochemical equivalence of extraction procedures is of utmost importance. Compared to routine analytical methods, comprehensive metabolite profiling has pushed forward the concept of phytochemical equivalence. In this study, an untargeted metabolomic approach was used to cross-compare four marketed extracts from Serenoa repens obtained with three different extraction processes: ethanolic, hexanic and sCO2 (supercritical carbon dioxide). Our approach involved a biphasic extraction of native compounds followed by liquid chromatography coupled to a high-resolution mass spectrometry based metabolomic workflow. Our results showed significant differences in the contents of major and minor compounds according to the extraction solvent used. The analyses showed that ethanolic extracts were supplemented in phosphoglycerides and polyphenols, hexanic extracts had higher amounts of free fatty acids and minor compounds, and sCO2 samples contained more glycerides. The discriminant model in this study could predict the extraction solvent used in commercial samples and highlighted the specific biomarkers of each process. This metabolomic survey allowed the authors to assess the phytochemical content of extracts and finished products of S. repens and unequivocally established that sCO2, hexanic and ethanolic extracts are not chemically equivalent and are therefore unlikely to be pharmacologically equivalent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.