Anytime and anywhere network access can be provided by Unmanned Aerial Vehicles (UAV) with air-to-ground and air-to-air communications using directional antennas for targets located on the ground. Deploying these Unmanned Aerial Vehicles to cover targets is a complex problem since each target should be covered, while minimizing (i) the deployment cost and (ii) the UAV altitudes to ensure good communication quality. We also consider connectivity between the UAVs and a base station in order to collect and send information to the targets, which is not considered in many similar studies. In this paper, we provide an efficient optimal program to solve this problem and show the trade-off analysis due to conflicting objectives. We propose a fair trade-off optimal solution and also evaluate the cost of adding connectivity to the UAV deployment.
We propose a theoretical framework for maximizing the LoRaWAN capacity in terms of the number of end nodes, when they all have the same traffic generation process. The model optimally allocates the spreading factor to the nodes so that attenuation and collisions are optimized. We use an accurate propagation model considering Rayleigh channel, and we take into account physical capture and imperfect SF orthogonality while guaranteeing a given transmission success probability to each served node in the network. Numerical results show the effectiveness of our SF allocation policy. Our framework also quantifies the maximum capacity of single cell networks and the gain induced by multiplying the gateways on the covered area. We finally evaluate the impact of physical capture and imperfect SF orthogonality on the SF allocation and network performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.