very selective A+International audienceThe performance of the IEEE 802.11b wireless local area networks is analyzed. We have observed that when some mobile hosts use a lower bit rate than the others, the performance of all hosts is considerably degraded. Such a situation is a common case in wireless local area networks in which a host far away from an access point is subject to important signal fading and interference. To cope with this problem, the host changes its modulation type, which degrades its bit rate to some lower value. Typically, 802.11b products degrade the bit rate from 11 Mb/s to 5.5, 2, or 1 Mb/s when repeated unsuccessful frame transmissions are detected. In such a case, a host transmitting for example at 1 Mb/s reduces the throughput of all other hosts transmitting at 11 Mb/s to a low value below 1 Mb/s. The basic CSMA/CA channel access method is at the root of this anomaly: it guarantees an equal long term channel access probability to all hosts. When one host captures the channel for a long time because its bit rate is low, it penalizes other hosts that use the higher rate. We analyze the anomaly theoretically by deriving simple expressions for the useful throughput, validate them by means of simulation, and compare with several performance measurements
Abstract-We analyze in this paper the fairness of the 802.11 DCF (Distributed Coordination Function) access method. Shortterm fairness is an important property of a MAC layer for obtaining short delays. We show that contrary to the common wisdom, a 802.11 cell with two hosts does not exhibit shortterm unfairness. Many papers considered 802.11 as short-term unfair by referring to a study of the Wavelan CSMA/CA access method [1]. The confusion comes from the extrapolation of its results to 802.11. Actually, these two access methods are very different: the Wavelan CSMA/CA access method performs exponential backoff when the channel is sensed busy, whereas 802.11 does the same only after a collision.We
In this paper, we propose IoTChain, a combination of the OSCAR architecture [1] and the ACE authorization framework [2] to provide an E2E solution for the secure authorized access to IoT resources. IoTChain consists of two components, an authorization blockchain based on the ACE framework and the OSCAR object security model, extended with a group key scheme. The blockchain provides a flexible and trustless way to handle authorization while OSCAR uses the public ledger to set up multicast groups for authorized clients. To evaluate the feasibility of our architecture, we have implemented the authorization blockchain on top of a private Ethereum network. We report on several experiments that assess the performance of different architecture components.
International audienceMAC address randomization is a common privacy protection measure deployed in major operating systems today.It is used to prevent user-tracking with probe requests that are transmitted during IEEE 802.11 network scans. We present an attack to defeat MAC address randomization through observation of the timings of the network scans with an off-the-shelf Wi-Fi interface. This attack relies on a signature based on inter-frame arrival times of probe requests, which is used to group together frames coming from the same device although they use distinct MAC addresses. We propose several distance metrics based on timing and use them together with an incremental learning algorithm in order to group frames. We show that these signatures are consistent over time and can be used as a pseudo-identifier to track devices. Our framework is able to correctly group frames using different MAC addresses but belonging to the same device in up to 75% of the cases. These results show that the timing of 802.11 probe frames can be abused to track individual devices and that address randomization alone is not always enough to protect users against tracking
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.