The timing of Neanderthal disappearance and the extent to which they overlapped with the earliest incoming anatomically modern humans (AMHs) in Eurasia are key questions in palaeoanthropology. Determining the spatiotemporal relationship between the two populations is crucial if we are to understand the processes, timing and reasons leading to the disappearance of Neanderthals and the likelihood of cultural and genetic exchange. Serious technical challenges, however, have hindered reliable dating of the period, as the radiocarbon method reaches its limit at ∼50,000 years ago. Here we apply improved accelerator mass spectrometry (14)C techniques to construct robust chronologies from 40 key Mousterian and Neanderthal archaeological sites, ranging from Russia to Spain. Bayesian age modelling was used to generate probability distribution functions to determine the latest appearance date. We show that the Mousterian ended by 41,030-39,260 calibrated years bp (at 95.4% probability) across Europe. We also demonstrate that succeeding 'transitional' archaeological industries, one of which has been linked with Neanderthals (Châtelperronian), end at a similar time. Our data indicate that the disappearance of Neanderthals occurred at different times in different regions. Comparing the data with results obtained from the earliest dated AMH sites in Europe, associated with the Uluzzian technocomplex, allows us to quantify the temporal overlap between the two human groups. The results reveal a significant overlap of 2,600-5,400 years (at 95.4% probability). This has important implications for models seeking to explain the cultural, technological and biological elements involved in the replacement of Neanderthals by AMHs. A mosaic of populations in Europe during the Middle to Upper Palaeolithic transition suggests that there was ample time for the transmission of cultural and symbolic behaviours, as well as possible genetic exchanges, between the two groups.
We discuss the implications of the existence of a clearly Neandertal premolar dating to the period of the Middle to Upper Paleolithic transition in the Meuse river basin.
The impact of deteriorating climatic conditions on variability in the archaeological record towards the Last Glacial Maximum (LGM) remains uncertain. Partly as a result of poor-quality data, previous studies on Upper Palaeolithic (UP) societies of North-Western Europe prior to the LGM have focused on techno-typological traditions and diversification to outline the diachronic processes through which assemblage composition changed. This study addresses the adaptive trade-offs brought about by the general climatic downturn towards the LGM in North-Western Europe, by investigating the impact of local climate and habitat characteristics on the behavioural variability that characterises Gravettian technological organisation compared to the previous Aurignacian, based on two assemblages from Walou Cave, Belgium. This site is one of the rare well-stratified sites in North-Western Europe with evidence for multiple occupation events accompanied by a fine-grained palaeoenvironmental record. We use a combination of analytical techniques (AMS, LA-ICP-MS and ZooMS) to evaluate questions about hunter-gatherer adaptations. Faunal remains at Walou Cave mirror the faunal diversity documented at numerous other Aurignacian and Gravettian sites in the broader European context, which is similar between both periods. The overall picture presented here, using multiple lines of evidence, is not entirely clear; nonetheless, the results suggest that Gravettian technologies are unlikely to solely be a product of heightened risk in relation to a significant reshuffling of food resources compared to the previous Aurignacian. Future research of the factors structuring assemblage variability prior to the LGM will have to assess whether Aurignacian and Gravettian technologies indeed offer no relative material advantage over one another, a phenomenon called ‘technological equivalence’.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.