Most proteins in all organisms undergo crucial N-terminal modifications involving N-terminal methionine excision, N-alpha-acetylation or N-myristoylation (N-Myr), or S-palmitoylation. We investigated the occurrence of these poorly annotated but essential modifications in proteomes, focusing on eukaryotes. Experimental data for the N-terminal sequences of animal, fungi, and archaeal proteins, were used to build dedicated predictive modules in a new software. In vitro N-Myr experiments were performed with both plant and animal N-myristoyltransferases, for accurate prediction of the modification. N-terminal modifications from the fully sequenced genome of Arabidopsis thaliana were determined by MS. We identified 105 new modified protein N-termini, which were used to check the accuracy of predictive data. An accuracy of more than 95% was achieved, demonstrating (i) overall conservation of the specificity of the modification machinery in higher eukaryotes and (ii) robustness of the prediction tool. Predictions were made for various proteomes. Proteins that had undergone both N-terminal methionine (Met) cleavage and N-acetylation were found to be strongly overrepresented among the most abundant proteins, in contrast to those retaining their genuine unblocked Met. Here we propose that the nature of the second residue of an ORF is a key marker of the abundance of the mature protein in eukaryotes.
Protein N-terminal methionine (Met) excision (NME) is carried out by two types of Met aminopeptidases (MAPs), MAP1 and MAP2, in eukaryotes. Three enzymes, MAP1A, MAP2A, and MAP2B, have been identified in the cytoplasm of Arabidopsis (Arabidopsis thaliana). MAP transcript quantification revealed a predominance of MAP2B and developmental and organ-specific regulation of both MAP1A and MAP2s. By combining reverse genetics and reverse chemogenomics in transgenic plant lines, we have devised specific and reversible switches for the investigation of the role of cytoplasmic NME in Arabidopsis and of the respective contributions of the two types of cytoplasmic MAPs throughout development. dsRNA interference and knockout (KO) plant lines targeting either MAP1A alone or both MAP2s simultaneously were constructed and shown to display wild-type phenotypes. In the MAP1A KO context, modulating MAP2 activity by treatment with various concentrations of the specific drug fumagillin impaired plant development, with particularly strong effects on the root system. Reciprocally, complete MAP2 inhibition in various MAP1A knocked-down genetic backgrounds also generated a gradient of developmentally abnormal plants, but the effects on the root system were milder than in the KO context. In the absence of MAP2 activity, the severity of the phenotype in the MAP1A knocked-down lines was correlated to the extent of MAP1A mRNA accumulation. Complete cytoplasmic NME inactivation blocked development after plant germination. Thus, in plants, (1) cytoplasmic NME is essential; (2) MAP1A and MAP2s are functionally interchangeable, which is not the case in fungi and animals, as a complete block of either MAP-type activity does not cause any visible molecular or phenotypic effect; and (3) a minimal level of cytoplasmic MAP is required for normal development.
The proteome of any system is a dynamic entity dependent on the intracellular concentration of the entire set of expressed proteins. In turn, this whole protein concentration will be reliant on the stability/turnover of each protein as dictated by their relative rates of synthesis and degradation. In this study, we have investigated the dynamics of the stromal proteome in the model organism Chlamydomonas reinhardtii by characterizing the half-life of the whole set of proteins. 2-DE stromal proteins profiling was set up and coupled with MS analyses. These identifications featuring an average of 26% sequence coverage and eight non-redundant peptides per protein have been obtained for 600 independent samples related to 253 distinct spots. An interactive map of the global stromal proteome, of 274 distinct protein variants is now available on-line at http://www.isv.cnrs-gif.fr/gel2dv2/. N-α-terminal-Acetylation (NTA) was noticed to be the most frequently detectable post-translational modification, and new experimental data related to the chloroplastic transit peptide cleavage site was obtained. Using this data set supplemented with series of pulse-chase experiments, elements directing the relationship between half-life and N-termini were analyzed. Positive correlation between NTA and protein half-life suggests that NTA could contribute to protein stabilization in the stroma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.