SignificanceDrought remains a critical obstacle to meeting the food demands of the coming century. Understanding the interplay between drought stress, plant development, and the plant microbiome is central to meeting this challenge. Here, we demonstrate that drought causes enrichment of a distinct set of microbes in roots, composed almost entirely of monoderms, which lack outer membranes and have thick cell walls. We demonstrate that under drought, roots increase the production of many metabolites, and that monoderms inhabiting the drought-treated rhizosphere exhibit increased activity of transporters connected with some of these same compounds. The discovery of this drought-induced enrichment and associated shifts in metabolite exchange between plant and microbe reveal a potential blueprint for manipulating plant microbiomes for improved crop fitness.
SURE (sugar responsive) is a cis element in plant sugar signaling. The SURE element was reported first for potato, in which it confers sugar responsiveness to the patatin promoter. A SURE binding transcription factor has not been isolated. We have isolated a transcription factor cDNA from barley and purified the corresponding protein. The transcription factor, SUSIBA2 (sugar signaling in barley), belongs to the WRKY proteins and was shown to bind to SURE and W-box elements but not to the SP8a element in the iso1 promoter. Nuclear localization of SUSIBA2 was demonstrated in a transient assay system with a SUSIBA2:green fluorescent protein fusion protein. Exploiting the novel transcription factor oligodeoxynucleotide decoy strategy with transformed barley endosperm provided experimental evidence for the importance of the SURE elements in iso1 transcription. Antibodies against SUSIBA2 were produced, and the expression pattern for susiba2 was determined at the RNA and protein levels. It was found that susiba2 is expressed in endosperm but not in leaves. Transcription of susiba2 is sugar inducible, and ectopic susiba2 expression was obtained in sugar-treated leaves. Likewise, binding to SURE elements was observed for nuclear extracts from sugar-treated but not from control barley leaves. The temporal expression of susiba2 in barley endosperm followed that of iso1 and endogenous sucrose levels, with a peak at ف 12 days after pollination. Our data indicate that SUSIBA2 binds to the SURE elements in the barley iso1 promoter as an activator. Furthermore, they show that SUSIBA2 is a regulatory transcription factor in starch synthesis and demonstrate the involvement of a WRKY protein in carbohydrate anabolism. Orthologs to SUSIBA2 were isolated from rice and wheat endosperm.
A B S T R A C T This paper describes the third full release of the Rossby Centre Regional Climate model (RCA3), with an emphasis on changes compared to earlier versions, in particular the introduction of a new tiled land-surface scheme. The model performance over Europe when driven at the boundaries by ERA40 reanalysis is discussed and systematic biases identified. This discussion is performed for key near-surface variables, such as temperature, precipitation, wind speed and snow amounts at both seasonal and daily timescales. An analysis of simulated clouds and surface turbulent and radiation fluxes is also made, to understand the causes of the identified biases. RCA3 shows equally good, or better, correspondence to observations than previous model versions at both analysed timescales. The primary model bias relates to an underestimate of the diurnal surface temperature range over Northern Europe, which maximizes in summer. This error is mainly linked to an overestimate of soil heat flux. It is shown that the introduction of an organic soil component reduces the error significantly. During the summer season, precipitation and surface evaporation are both overestimated over Northern Europe, whereas for most other regions and seasons precipitation and surface turbulent fluxes are well simulated.
Transcript accumulation for the psbA, psbD, psbD-C, rbcL-S and rrn genes in Synechocystis 6803 was followed under different light conditions. psbA, psbD, psbD-C and rbcL-S transcripts required light to accumulate and the relative abundance of these transcripts differed between high and low light conditions. Under high light conditions, steady-state levels of psbA, psbD and psbD-C transcripts were higher while levels of rbcL-S transcripts were lower than under low light conditions. rrn transcripts accumulated in the dark and the transcript levels were the same under illuminated conditions. Analyses of constructed Synechocystis 6803 mutants showed that both psbA-2 and psbA-3 could produce high levels of transcripts under illuminated conditions. No psbA-1 transcripts were detected.
Drought is the most important environmental stress limiting crop yields. The C4 cereal sorghum [Sorghum bicolor(L.) Moench] is a critical food, forage, and emerging bioenergy crop that is notably drought-tolerant. We conducted a large-scale field experiment, imposing preflowering and postflowering drought stress on 2 genotypes of sorghum across a tightly resolved time series, from plant emergence to postanthesis, resulting in a dataset of nearly 400 transcriptomes. We observed a fast and global transcriptomic response in leaf and root tissues with clear temporal patterns, including modulation of well-known drought pathways. We also identified genotypic differences in core photosynthesis and reactive oxygen species scavenging pathways, highlighting possible mechanisms of drought tolerance and of the delayed senescence, characteristic of the stay-green phenotype. Finally, we discovered a large-scale depletion in the expression of genes critical to arbuscular mycorrhizal (AM) symbiosis, with a corresponding drop in AM fungal mass in the plants’ roots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.