It is of great importance to evaluate the hull structural vibrations response of large ships in extreme seas. Studies of hydroelastic response of an ultra large ship have been conducted with comparative verification between experimental and numerical methods in order to estimate the wave loads response considering hull vibration and water impact. A segmented self-propelling model with steel backbone system was elaborately designed and the experiments were performed in a tank. Time domain numerical simulations of the ship were carried out by using three-dimensional nonlinear hydroelasticity theory. The results from the computational analyses have been correlated with those from model tests.
Abstract:The traditional laboratory models for the hydroelasticity and seakeeping performance of ships are tested in calm water and in uni-directional, artificially generated waves. A new alternative to the tank model measurement methodology is to conduct experiments using large-scale models in actual sea conditions. To implement the tests, a large-scale segmented self-propelling model and testing system were designed and assembled. A buoy wave meter was adopted to record the coastal waves that the model encountered during the tests. The analysis of the results of waves in sheltered waters by the spectral method shows good agreement with ISSC spectra. To investigate the difference between this new methodology and the traditional towing tank tests, a small-scale model, whose type and configuration are the same as those of the large-scale model ship, was used and tests were conducted in a towing tank. Comparison of the two experimental results shows that there is a remarkable difference in the response characteristics between the large-scale model at sea and the small-scale model in the tank. Numerical simulations of the responses of the ship under equivalent sea states were also carried out. The influence of directional spreading functions on the results was analyzed by a numerical approach. The classical model tests under long-crested waves in the towing tank over-estimate the motion and wave load responses; however, large-scale model tests carried out at sea are more reasonable for ship design and scientific research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.