Greigite (Fe 3 S 4 ) is a widespread authigenic magnetic mineral in anoxic sediments and is also commonly biosynthesized by magnetotactic bacteria in aqueous environments. While the presence of fossilized bacterial magnetite (Fe 3 O 4 ) has now been widely demonstrated, the preservation of greigite magnetofossils in the geological record is only poorly constrained. Here we investigate Mio-Pliocene sediments of the former Black Sea to test whether we can detect greigite magnetofossils and to unravel potential environmental controls on greigite formation. Our magnetic analyses and transmission electron microscope (TEM) observations indicate the presence of both diagenetic and bacterial greigite, and suggest a potentially widespread preservation of greigite magnetofossils in ancient sediments, which has important implications for assessing the reliability of paleomagnetic records carried by greigite. TEM-based chemical and structural analyses also indicate the common presence of nickel-substituted diagenetic iron sulfide crystals with a ferrimagnetic greigite structure. In addition, our cyclostratigraphic framework allows correlation of magnetic properties of Messinian Black Sea sediments (Taman Peninsula, Russia) to global climate records. Diagenetic greigite enhancements appear to be climatically controlled, with greigite mainly occurring in warm/wet periods. Diagenetic greigite formation can be explained by variations in terrigenous inputs and dissolved pore water sulfate concentrations in different sedimentary environments. Our analysis demonstrates the usefulness of greigite for studying long-term climate variability in anoxic environments.
Using these numerical constraints, we propose a Mediterranean outflow pump as an 20 alternative scenario for the two most dramatic hydrological changes in the MSC: first the 21Halite-Lago-mare transition and then the Pliocene reestablishment of marine conditions. 22
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ?
Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.