N-ε-Carboxymethyllysine (CML) is formed during glycation reactions (synonym, Maillard reaction). CML is degraded by the human colonic microbiota, but nothing is known about the formation of particular metabolites. In the present study, six probiotic E. coli strains were incubated with CML in the presence or absence of oxygen in either minimal or nutrientrich medium. CML was degraded by all strains only in the presence of oxygen. HPLC-MS/MS was applied for identification of metabolites of CML. For the first time, three bacterial metabolites of CML have been identified, namely Ncarboxymethylcadaverine (CM-CAD), N-carboxymethylaminopentanoic acid (CM-APA), and the N-carboxymethyl-Δ 1piperideinium ion. During 48 h of incubation of CML with five different E. coli strains in minimal medium in the presence of oxygen, 37−66% of CML was degraded, while CM-CAD (1.5−8.4% of the initial CML dose) and CM-APA (0.04−0.11% of the initial CML dose) were formed linearly. Formation of the metabolites is enhanced when dipeptide-bound CML is applied, indicating that transport phenomena may play an important role in the "handling" of the compound by microorganisms.
The probiotic product Symbioflor2 (DSM 17252) is a bacterial concentrate of six different Escherichia coli genotypes, whose complete genome sequences are compared here, between each other as well as to other E. coli genomes. The genome sequences of Symbioflor2 E. coli components contained a number of virulence-associated genes. Their presence seems to be in conflict with a recorded history of safe use, and with the observed low frequency of adverse effects over a period of more than 6 years. The genome sequences were used to identify unique sequences for each component, for which strain-specific hybridization probes were designed. A colonization study was conducted whereby five volunteers were exposed to an exceptionally high single dose. The results showed that the probiotic E. coli could be detected for 3 months or longer in their stools, and this was in particular the case for those components containing higher numbers of virulence-associated genes. Adverse effects from this long-term colonization were absent. Thus, the presence of the identified virulence genes does not result in a pathogenic phenotype in the genetic background of these probiotic E. coli.
Innate inflammatory responses are crucial for induction and regulation of T cell and antibody responses. Mast cell (MC)-deficient Kit mutant mice showed impaired adaptive immunity, suggesting that MCs provide essential adjuvant activities, and pharmacological MC activation was proposed as a new adjuvant principle. However, the Kit mutations result in complex alterations of the immune system in addition to MC deficiency. We revisited the role of MCs in vaccination responses using Mcpt5-Cre R26DTA/DTA and Cpa3Cre/+ mice that lack connective tissue MCs or all MCs, respectively, but feature an otherwise normal immune system. These animals showed no impairment of T and B cell responses to intradermal vaccination with protein antigen plus complete Freund’s adjuvant. Moreover, we demonstrate that the adjuvant effects of the MC secretagogue c48/80 in intradermal or mucosal immunization are independent of the presence of MCs. We hence find no evidence for a regulation by MCs of adaptive immune responses to protein antigens. The finding that immunological MC functions differ from those suggested by experiments in Kit mutants, emphasizes the importance of rigorous tests in Kit-independent MC-deficiency models.
The complete genome of probiotic Escherichia coli strain G3/10 is presented here. In addition, the probiotic E. coli strains G1/2, G4/9, G5, G6/7, and G8 are presented in draft form. These six strains together comprise the probiotic product Symbioflor 2 (DSM 17252).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.