SummaryThe analysis of a candidate biosynthetic gene cluster (97 kbp) for the polyether ionophore monensin from Streptomyces cinnamonensis has revealed a modular polyketide synthase composed of eight separate multienzyme subunits housing a total of 12 extension modules, and flanked by numerous other genes for which a plausible function in monensin biosynthesis can be ascribed. Deletion of essentially all these clustered genes specifically abolished monensin production, while overexpression in S. cinnamonensis of the putative pathway-specific regulatory gene monR led to a fivefold increase in monensin production. Experimental support is presented for a recently-proposed mechanism, for oxidative cyclization of a linear polyketide intermediate, involving four enzymes, the products of monBI , monBII , monCI and monCII . In frame deletion of either of the individual genes monCII (encoding a putative cyclase) or monBII (encoding a putative novel isomerase) specifically abolished monensin production. Also, heterologous expression of monCI , encoding a flavin-linked epoxidase, in S. coelicolor was shown to significantly increase the ability of S. coelicolor to epoxidize linalool, a model substrate for the presumed linear polyketide intermediate in monensin biosynthesis.
We present a simple, mild, and highly effective method for the direct conversion of primary alcohols to carboxylic acids. TPAP serves as the catalyst, and NMO·H(2)O plays a dual role, acting as the co-oxidant and as a reagent for aldehyde hydrate stabilization. This previously unknown stabilizing effect of geminal diols by N-oxides is the key for the efficiency of the overall transformation.
Ionophoric polyethers are produced by the exquisitely stereoselective oxidative cyclization of a linear polyketide, probably via a triepoxide intermediate. We report here that deletion of either or both of the monBI and monBII genes from the monensin biosynthetic gene cluster gave strains that produced, in place of monensins A and B, a mixture of C-3-demethylmonensins and a number of minor components, including C-9-epi-monensin A. All the minor components were efficiently converted into monensins by subsequent acid treatment. These data strongly suggest that epoxide ring opening and concomitant polyether ring formation are catalyzed by the MonB enzymes, rather than by the enzyme MonCII as previously thought. Consistent with this, homology modeling shows that the structure of MonB-type enzymes closely resembles the recently determined structure of limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis.
The biosynthesis of complex reduced polyketides is catalysed in actinomycetes by large multifunctional enzymes, the modular Type I polyketide synthases (PKSs). Most of our current knowledge of such systems stems from the study of a restricted number of macrolide-synthesising enzymes. The sequencing of the genes for the biosynthesis of monensin A, a typical polyether ionophore polyketide, provided the first genetic evidence for the mechanism of oxidative cyclisation through which polyethers such as monensin are formed from the uncyclised products of the PKS. Two intriguing genes associated with the monensin PKS cluster code for proteins, which show strong homology with enzymes that trigger double bond migrations in steroid biosynthesis by generation of an extended enolate of an unsaturated ketone residue. A similar mechanism operating at the stage of an enoyl ester intermediate during chain extension on a PKS could allow isomerisation of an E double bond to the Z isomer. This process, together with epoxidations and cyclisations, form the basis of a revised proposal for monensin formation. The monensin PKS has also provided fresh insight into general features of catalysis by modular PKSs, in particular into the mechanism of chain initiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.