ABSTRACT:Popov, L.E., Hairapetian, V., Evans, D.H., Ghobadi Pour, M., Holmer, L.E. and Baars, C. 2015. Review of the Ordovician stratigraphy and fauna of the Anarak Region in Central Iran. Acta Geologica Polonica, 65 (4), 403-435. Warszawa.The Ordovician sedimentary succession of the Pol-e Khavand area, situated on the northern margin of the Yazd block, has important differences from those in other parts of Central Iran. It has been established that the presumably terminal Cambrian to Lower Ordovician volcano-sedimentary Polekhavand Formation, exposed in the Pol-e Khavand area, has non-conformable contact with greenschists of the Doshakh Metamorphic Complex. The succeeding, mainly siliciclastic Chahgonbad Formation contains low to moderately diverse faunal assemblages, including brachiopods, cephalopods, trilobites and tentaculitids. The Darriwilian age of the lower part of the formation is well established by the co-occurrence of brachiopod genera Camerella, Phragmorthis, Tritoechia and Yangtzeella. The associated rich cephalopod fauna is different from the Darriwilian cephalopod associations of the Alborz terrane and may show some affinity with warm water faunas of North China and South Korea. It is likely that the Mid Ordovician fauna recovered from the lower part of the Chahgonbad Formation settled in the area sometime during a warming episode in the late Darriwilian. By contrast the low diversity mid Katian brachiopod association includes only three taxa, which occur together with the trilobite Vietnamia cf. teichmulleri and abundant, but poorly preserved tentaculitids questionably assigned to the genus Costatulites. This faunal association bears clear signatures linking it to the contemporaneous cold water faunas of the Arabian, Mediterranean and North African segments of Gondwana. Four brachiopod species recovered from the Chahgonbad Formation, including Hibernodonta lakhensis, Hindella prima, Lomatorthis? multilamellosa and Yangtzeella chupananica are new to science.
Limestone horizons of Upper Ordovician (Katian) age in southwest Wales contain diverse fossil faunas including rugose corals. The existence of Ordovician Rugosa in Wales was first reported by Murchison in the 1830s, but since then hardly any specimens have been documented systematically until this present study. Newly collected material from the area around Llanddowror (Carmarthenshire) has now confirmed the diversity of rugose corals in the Sholeshook Limestone (Katian age), an arenaceous limestone originating from the shelf edge of the palaeocontinent Avalonia. The majority of the specimens are preserved as moulds. This means that in many instances preservation of the fossils was insufficient for specific identification; nevertheless, it was possible to document a diverse rugose coral fauna, including Helicelasma, probable Grewingkia and Kenophyllum, and a potential early mucophyllid. While associated with considerable difficulties, as some diagnostic features of Rugosa are not visible in moulds, it is demonstrated here that the work with such specimens can result in faunal information which would otherwise be unobtainable. An assemblage of rugose and tabulate corals in the Sholeshook Limestone can be differentiated from a similar assemblage in the neighbouring Robeston Wathen Limestone which has a slightly different lithology. The fauna has strong similarities with other Avalonian (Irish, English, Belgian) as well as Baltic (Estonian and Norwegian) rugose coral faunas. Copyright © 2012 John Wiley & Sons, Ltd.
A decrease in atmospheric carbon dioxide (CO2) concentration during the mid‐Palaeozoic is postulated to have been partially the consequence of the evolution of rooted land plants. Root development increased the amount of carbonic acid generated by root respiration within soils. This led to increased chemical weathering of silicates and subsequent formation of carbonates, resulting in lower atmospheric CO2 concentrations. To test this assumption, analog (morphologically equivalent) plant species, ranging from those possessing no roots to those with complex rhizomatous rooting systems, were grown in trays within microcosms at ambient (360 ppm/0.37 mbar) and highly elevated (3500 ppm/3.55 mbar) atmospheric CO2 concentrations in a controlled environment facility. Substrate CO2 concentrations increased significantly under elevated atmospheric CO2, and Equisetum hyemale (L.). The latter is postulated to result from the effects of deeply rooted plants, elevated atmospheric CO2 concentrations, or both. Plants with simple or no rooting systems or the addition of dead organic matter as a substrate for microorganisms did not enhance substrate CO2 concentrations.
Rugose corals are thought to have evolved from an ancestral anthozoan during the Middle Ordovician Epoch even though there is a lack of fossil evidence for the early evolutionary history of the Rugosa. Previously documented species of early rugose corals are all assigned to the main orders Calostylina, Streptelasmatina, Cystiphyllina and Stauriina, which had all evolved by the late Sandbian. Lambelasma? sp., a new rugose coral, was recovered from the upper Darriwilian (Middle Ordovician) part of the Shirgesht Formation of Central Iran. One of the fossils, partly embedded in rock matrix, was examined using synchrotron X-ray tomography, which is here demonstrated to be a useful tool in palaeontological taxonomic studies. The new fossils form part of a midlatitude Gondwana fauna and are the earliest record of rugose corals to date. The specimens combine features of both the Streptelasmatina and Calostylina, but are here assigned to the Lambelasmatidae (Calostylina) on the grounds of a very deep calice, the pinnate arrangement of the septa and a lack of synapticulae and tabulae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.