Puzzling stability: molecular jigsaw pieces of residues characterized in light of activity, lipophilicity, stability against oxidation, and hepatotoxicity were combined to yield flupirtine analogue 25b.
The highly structurally similar drugs flupirtine and retigabine have been regarded as safe and effective for many years but lately they turned out to exert intolerable side effects. While the twin molecules share the mode of action, both stabilize the open state of voltage-gated potassium channels, the form and severity of adverse effects is different. The analgesic flupirtine caused drug-induced liver injury in rare but fatal cases, whereas prolonged use of the antiepileptic retigabine led to blue tissue discoloration. Because the adverse effects seem unrelated to the mode of action, it is likely, that both drugs that occupied important therapeutic niches, could be replaced. Reasons for the clinically relevant toxicity will be clarified and future substitutes for these drugs presented in this review.
The potassium channel openers flupirtine and retigabine have proven to be valuable analgesics or antiepileptics. Their recent withdrawal due to occasional hepatotoxicity and tissue discoloration, respectively, leaves a therapeutic niche unfilled. Metabolic oxidation of both drugs gives rise to the formation of electrophilic quinones. These elusive, highly reactive metabolites may induce liver injury in the case of flupirtine and blue tissue discoloration after prolonged intake of retigabine. We examined which structural features can be altered to avoid the detrimental oxidation of the aromatic ring and shift oxidation toward the formation of more benign metabolites. Structure–activity relationship studies were performed to evaluate the KV7.2/3 channel opening activity of 45 derivatives. Sulfide analogues were identified that are devoid of the risk of quinone formation, but possess potent KV7.2/3 opening activity. For example, flupirtine analogue 3‐(3,5‐difluorophenyl)‐N‐(6‐(isobutylthio)‐2‐(pyrrolidin‐1‐yl)pyridin‐3‐yl)propanamide (48) has 100‐fold enhanced activity (EC50=1.4 nm), a vastly improved toxicity/activity ratio, and the same efficacy as retigabine in vitro.
Tetrazoles are small functional heterocycles that are suited to serve simultaneously as aromatic platform for diversity and as functional interaction motif. Furthermore, the tetrazole ring and its deprotonated tetrazolate counterpart are metal ion complexing ligands that possess a rich variety of binding and bridging modes. We recently demonstrated that fragments containing the tetrazole moiety and a metal chelating hydrazide group are well suited to discover selective screening hits with high ligand efficiency for a given protein target. Here, we report the synthesis and characterization of new polydentate tetrazole-containing screening compounds and their synthetic precursors as well as their deposition in a multipurpose screening library in the frame of the EU-OPENSCREEN network. The pure and well-characterized screening compounds could be useful to aid drug discovery programs for multiple or hitherto undruggable targets by enclosure of under-represented tetrazole derivatives.
Single-cell investigations of the diatoms Coscinodsicus granii and Thalassiosira pseudonana were performed using laser desorption/ionization (LDI)-MS without the addition of chemical matrices. The unique cell wall architecture of these microalgae, more precisely the biomineralized nanostructured surface, supported the ionization of cellular as well as surface-related metabolites. In model experiments with purified diatom cell walls of eight species C. granii and T. pseudonana proved to promote the ionization of the polymer polyethylene glycol most efficiently. These species were therefore chosen for further experiments. Without any additional workup, living diatom cells can be washed, can be placed on the LDI target and can immediately be profiled using LDI-MS. Characteristic signals arising from the two species were assigned to common metabolites known from diatom metabolism. Among others, chlorophyll, phospholipids and amino acids were detected. Using these fingerprint signals, we were able to perform species-specific MS imaging down to a single-cell resolution of 20 by 20 µm. The larger C. granii cells can be directly visualized, while more than one of the smaller T. pseudonana cells is needed to generate high-quality images. The introduced technique will pave the way toward a chemotyping of phytoplankton that will enable the automated annotation of microalgal species. But also, an assignment of metabolic plasticity on a single-cell level that could answer fundamental questions about plankton diversity is now in reach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.