Bionanostructure-enhanced ionization allows the analysis of a diverse selection of analytes including polymers, sugars, amino alcohols, and organic acids without interfering matrix signals. We also show that celite, a commercially available porous material containing mineralized algal bionanostructures, supports LDI-MS.
Single-cell investigations of the diatoms Coscinodsicus granii and Thalassiosira pseudonana were performed using laser desorption/ionization (LDI)-MS without the addition of chemical matrices. The unique cell wall architecture of these microalgae, more precisely the biomineralized nanostructured surface, supported the ionization of cellular as well as surface-related metabolites. In model experiments with purified diatom cell walls of eight species C. granii and T. pseudonana proved to promote the ionization of the polymer polyethylene glycol most efficiently. These species were therefore chosen for further experiments. Without any additional workup, living diatom cells can be washed, can be placed on the LDI target and can immediately be profiled using LDI-MS. Characteristic signals arising from the two species were assigned to common metabolites known from diatom metabolism. Among others, chlorophyll, phospholipids and amino acids were detected. Using these fingerprint signals, we were able to perform species-specific MS imaging down to a single-cell resolution of 20 by 20 µm. The larger C. granii cells can be directly visualized, while more than one of the smaller T. pseudonana cells is needed to generate high-quality images. The introduced technique will pave the way toward a chemotyping of phytoplankton that will enable the automated annotation of microalgal species. But also, an assignment of metabolic plasticity on a single-cell level that could answer fundamental questions about plankton diversity is now in reach.
Chemically modified diatom cell walls represent a powerful tool to support ionization in LDI MS. The lack of background signals in the low molecular weight region of the mass spectra allows also the investigations of small analytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.