In vivo monitoring of stem cells after grafting is essential for a better understanding of their migrational dynamics and differentiation processes and of their regeneration potential. Migration of endogenous or grafted stem cells and neurons has been described in vertebrate brain, both under normal conditions from the subventricular zone along the rostral migratory stream and under pathophysiological conditions, such as degeneration or focal cerebral ischemia. Those studies, however, relied on invasive analysis of brain sections in combination with appropriate staining techniques. Here, we demonstrate the observation of cell migration under in vivo conditions, allowing the monitoring of the cell dynamics within individual animals, and for a prolonged time. Embryonic stem (ES) cells, constitutively expressing the GFP, were labeled by a lipofection procedure with a MRI contrast agent and implanted into rat brains. Focal cerebral ischemia had been induced 2 weeks before implantation of ES cells into the healthy, contralateral hemisphere. MRI at 78-m isotropic spatial resolution permitted the observation of the implanted cells with high contrast against the host tissue, and was confirmed by GFP registration. During 3 weeks, cells migrated along the corpus callosum to the ventricular walls, and massively populated the borderzone of the damaged brain tissue on the hemisphere opposite to the implantation sites. Our results indicate that ES cells have high migrational dynamics, targeted to the cerebral lesion area. The imaging approach is ideally suited for the noninvasive observation of cell migration, engraftment, and morphological differentiation at high spatial and temporal resolution.embryonic stem cells ͉ cerebral ischemia ͉ cell labeling S everal studies have been able to demonstrate the migrational capacity of endogenous stem or progenitor cells in rat and mouse brains during normal (1, 2) and pathophysiological conditions (3, 4). The therapeutical potential of stem cell grafting has recently been studied in various pathological conditions of the brain showing extensive cell migration after implantation. However, all investigations so far have required the invasive analysis of brain sections postmortem in various groups of animals for different survival periods. A recent investigation described the detection of labeled cells, injected into rats, but reported no specific cell migration in the in vivo MRI data (5). All other studies have investigated the potential of MRI to detect pretreated cells (5-7) by registering the MRI data ex vivo, thus permitting observation of only one time point. In the present investigation we demonstrate sufficient spatial and temporal resolution of experimental MRI at high fields to allow longitudinal studies on individual animals after stem cell implantation into the brain. We have investigated the spatial dynamics of implanted embryonic stem (ES) cells and demonstrated their high migrational potential from the implantation site in the normal brain hemisphere toward the ischemic le...
Summary:The therapeutical potential of transplantation of undifferentiated and predifferentiated murine embryonic stem cells for the regeneration of the injured brain was investigated in two rodent stroke models. Undifferentiated embryonic stem cells xenotransplanted into the rat brain at the hemisphere opposite to the ischemic injury migrated along the corpus callosum towards the damaged tissue and differentiated into neurons in the border zone of the lesion. In the homologous mouse brain, the same murine embryonic stem cells did not migrate, but produced highly malignant teratocarcinomas at the site of implantation, independent of whether they were predifferentiated in vitro to neural progenitor cells. The authors demonstrated a hitherto unrecognized inverse outcome after xenotransplantation and homologous transplantation of embryonic stem cells, which raises concerns about safety provisions when the therapeutical potential of human embryonic stem cells is tested in preclinical animal models.
Cholinergic neurons of the medial forebrain are considered important contributors to brain plasticity and neuromodulation. A reduction of cholinergic innervation can lead to pathophysiological changes of neurotransmission and is observed in Alzheimer's disease. Here we report on six patients with mild to moderate Alzheimer's disease (AD) treated with bilateral low-frequency deep brain stimulation (DBS) of the nucleus basalis of Meynert (NBM). During a four-week double-blind sham-controlled phase and a subsequent 11-month follow-up open label period, clinical outcome was assessed by neuropsychological examination using the Alzheimer's Disease Assessment Scale-cognitive subscale as the primary outcome measure. Electroencephalography and [(18)F]-fluoro-desoxyglucose positron emission tomography were, besides others, secondary endpoints. On the basis of stable or improved primary outcome parameters twelve months after surgery, four of the six patients were considered responders. No severe or non-transitional side effects related to the stimulation were observed. Taking into account all limitations of a pilot study, we conclude that DBS of the NBM is both technically feasible and well tolerated.
We treated a 13-year-old boy for life-threatening self-injurious behavior (SIB) and severe Kanner's autism with deep brain stimulation (DBS) in the amygdaloid complex as well as in the supra-amygdaloid projection system. Two DBS-electrodes were placed in both structures of each hemisphere. The stimulation contacts targeted the paralaminar, the basolateral (BL), the central amygdala as well as the supra-amygdaloid projection system. DBS was applied to each of these structures, but only stimulation of the BL part proved effective in improving SIB and core symptoms of the autism spectrum in the emotional, social, and even cognitive domains over a follow up of now 24 months. These results, which have been gained for the first time in a patient, support hypotheses, according to which the amygdala may be pivotal in the pathogeneses of autism and point to the special relevance of the BL part.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.