Summary:The therapeutical potential of transplantation of undifferentiated and predifferentiated murine embryonic stem cells for the regeneration of the injured brain was investigated in two rodent stroke models. Undifferentiated embryonic stem cells xenotransplanted into the rat brain at the hemisphere opposite to the ischemic injury migrated along the corpus callosum towards the damaged tissue and differentiated into neurons in the border zone of the lesion. In the homologous mouse brain, the same murine embryonic stem cells did not migrate, but produced highly malignant teratocarcinomas at the site of implantation, independent of whether they were predifferentiated in vitro to neural progenitor cells. The authors demonstrated a hitherto unrecognized inverse outcome after xenotransplantation and homologous transplantation of embryonic stem cells, which raises concerns about safety provisions when the therapeutical potential of human embryonic stem cells is tested in preclinical animal models.
The age-associated decline of the neurological and cognitive functions becomes more and more serious challenge for the developed countries with the increasing number of aged populations. The morphological and biochemical changes in the aging brain are the subjects of many extended research projects worldwide for a long time. However, the crucial role of the blood-brain barrier (BBB) impairment and disruption in the pathological processes in age-associated neurodegenerative disorders received special attention just for a few years. This article gives an overview on the major elements of the blood-brain barrier and its supporting mechanisms and also on their alterations during development, physiological aging process and age-associated neurodegenerative disorders (Alzheimer's disease, multiple sclerosis, Parkinson's disease, pharmacoresistant epilepsy). Besides the morphological alterations of the cellular elements (endothelial cells, astrocytes, pericytes, microglia, neuronal elements) of the BBB and neurovascular unit, the changes of the barrier at molecular level (tight junction proteins, adheres junction proteins, membrane transporters, basal lamina, extracellular matrix) are also summarized. The recognition of new players and initiators of the process of neurodegeneration at the level of the BBB may offer new avenues for novel therapeutic approaches for the treatment of numerous chronic neurodegenerative disorders currently without effective medication. KeywordsAging, blood-brain barrier, endothelial cells, neurodegenerative disorders, transport systems Structure of the blood-brain barrier (BBB)Homeostasis of the extracellular microenvironment in the neural tissue of the brain as well as its protection against neurotoxic compounds and variations in the composition of the blood are important for normal function of the neurons. It is warranted by a structure formed between blood and brain, which is therefore called the BBB.1 Clear evidence for the existence of this permeability barrier in the brain emerged in 1909 with the demonstration by Edwin Goldman (a South African-German) that a dye injected into the blood stream of a rat stained the whole body -except for the brain and spinal cord. The opposite was also true: injection of the dye into the cerebral ventricles stained the brain and spinal cord but not the rest of the body. 2,3 This occurs because most organs of the body are perfused by capillaries lined with endothelial cells (ECs) that have small pores (fenestrations) to allow for the rapid movement of small molecules into the organ interstitial fluid from the circulation. However, the capillary endothelium of the brain and spinal cord lack these pores because the ECs of brain capillary are connected to each other by continuous tight junctions (TJs), produced by the interaction of several transmembrane proteins that project into and seal the paracellular pathway.3-5 The interaction of these junctional proteins effectively blocks the free diffusion of
Treatment of certain central nervous system disorders, including different types of cerebral malignancies, is limited by traditional oral or systemic administrations of therapeutic drugs due to possible serious side effects and/or lack of the brain penetration and, therefore, the efficacy of the drugs is diminished. During the last decade, several new technologies were developed to overcome barrier properties of cerebral capillaries. This review gives a short overview of the structural elements and anatomical features of the blood–brain barrier. The various in vitro (static and dynamic), in vivo (microdialysis), and in situ (brain perfusion) blood–brain barrier models are also presented. The drug formulations and administration options to deliver molecules effectively to the central nervous system (CNS) are presented. Nanocarriers, nanoparticles (lipid, polymeric, magnetic, gold, and carbon based nanoparticles, dendrimers, etc.), viral and peptid vectors and shuttles, sonoporation and microbubbles are briefly shown. The modulation of receptors and efflux transporters in the cell membrane can also be an effective approach to enhance brain exposure to therapeutic compounds. Intranasal administration is a noninvasive delivery route to bypass the blood–brain barrier, while direct brain administration is an invasive mode to target the brain region with therapeutic drug concentrations locally. Nowadays, both technological and mechanistic tools are available to assist in overcoming the blood–brain barrier. With these techniques more effective and even safer drugs can be developed for the treatment of devastating brain disorders.
During the last decade, several articles have reported a relationship between advanced age and changes in the integrity of the blood-brain barrier (BBB). These changes were manifested not only in the morphology and structure of the cerebral microvessels but also in the expression and function of the transporter proteins in the luminal and basolateral surfaces of the capillary endothelial cells. Age-associated downregulation of the efflux pumps ATP-binding cassette transporters (ABC transporters) resulted in increased permeability and greater brain exposure to different xenobiotics and their possible toxicity. In age-related neurodegenerative pathologies like Alzheimer’s disease (AD), the amyloid-β (Aβ) clearance decreased due to P-glycoprotein (P-gp) dysfunction, leading to higher brain exposure. In stroke, however, an enhanced P-gp function was reported in the cerebral capillaries, making it even more difficult to perform effective neuroprotective therapy in the infarcted brain area. This mini-review article focuses on the efflux functions of the transporters and receptors of the BBB in age-related brain pathologies and also in healthy aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.