-Intramammary infections of dairy cows with Gram-positive bacteria such as Staphylococcus aureus (major cause of mastitis) have received a lot of attention because of their major economic impact on the dairy farm through production losses induced by an increase in somatic cell count. Management strategies, including greater awareness for efficient milking and hygienic measures, have limited the spread of Gram-positive bacteria and resulted in a significant decrease of proportion of S. aureus isolates and subclinical mastitis worldwide. Other organisms such as coliform subspecies and Streptococcus uberis, both environmental bacteria that cause clinical mastitis, have received less attention. Escherichia coli causes inflammation of the mammary gland in dairy cows around parturition and during early lactation with striking local and sometimes severe systemic clinical symptoms. This disease affects many high producing cows in dairy herds and may cause several cases of death per year in the most severe cases. It is well known that bacterial, cow and environmental factors are interdependent and influence mastitis susceptibility. Many studies, executed during the last decade, indicate that the severity of E. coli mastitis is mainly determined by cow factors rather than by E. coli pathogenicity. During E. coli mastitis, the host defense status is a cardinal factor determining the outcome of the disease. Today, we know that the neutrophil is a key factor in the cows' defense against intramammary infection with E. coli. Effective elimination of the pathogen by neutrophils is important for the resolution of infection and the outcome of E. coli mastitis. This review is a compilation of some major findings over the last 15 years concerning mainly host factors that modulate and influence neutrophil function and the mammary inflammatory reaction. The individual chapters address: virulence factors of E. coli strains, how neutrophils kill E. coli, connection between endotoxins, tumor necrosis factor-a and nitric oxide, severity classification of E. coli mastitis, lifespan of neutrophils, host factors that influence severity, tissue damage and production loss.
S. Twelve cows were experimentally infected in two quarters with 1i10% cfu Escherichia coli per quarter and six cows were infused with 500 µg endotoxin into two quarters. Six cows infected intramammarily with Esch. coli were treated intravenously with a bactericidal antibiotic 10 h after infection and subcutaneously 20 h later. Blood and milk samples were collected from all cows at regular time intervals. Milk production decreased more rapidly, but was less pronounced, after endotoxin infusion than during Esch. coli mastitis. The milk production losses in the noninflamed quarters were negligible in endotoxin mastitis, but were substantial during Esch. coli mastitis, probably due to more pronounced systemic effects. Reticulorumen motility was inhibited only during Esch. coli mastitis. Changes in plasma haptoglobin were more pronounced during Esch. coli mastitis, although they occurred sooner during endotoxin mastitis. No changes in plasma activities of enzymes such as lactate dehydrogenase, glutamic-oxaloacetic transaminase and γglutamyl transpeptidase were observed. Concentrations of tumour necrosis factor-α increased in both types of mastitis. Absorption of these cytokines into the circulation was highest during Esch. coli mastitis, especially in the untreated control group. We found only minor differences between the treated and untreated Esch. coli groups, but there were larger differences between the Esch. coli groups and the endotoxin group. These differences were probably due to differences in kinetics, composition and amounts of different cytokines released in the mammary gland and subsequently absorption into the circulation. Endotoxin is probably not directly responsible for the systemic changes during coliform mastitis.
Cell-penetrating peptides (CPPs) are a group of peptides, which have the ability to cross cell membrane bilayers. CPPs themselves can exert biological activity and can be formed endogenously. Fragmentary studies demonstrate their ability to enhance transport of different cargoes across the blood-brain barrier (BBB). However, comparative, quantitative data on the BBB permeability of different CPPs are currently lacking. Therefore, the in vivo BBB transport characteristics of five chemically diverse CPPs, i.e. pVEC, SynB3, Tat 47–57, transportan 10 (TP10) and TP10-2, were determined. The results of the multiple time regression (MTR) analysis revealed that CPPs show divergent BBB influx properties: Tat 47–57, SynB3, and especially pVEC showed very high unidirectional influx rates of 4.73 μl/(g × min), 5.63 μl/(g × min) and 6.02 μl/(g × min), respectively, while the transportan analogs showed a negligible to low brain influx. Using capillary depletion, it was found that 80% of the influxed peptides effectively reached the brain parenchyma. Except for pVEC, all peptides showed a significant efflux out of the brain. Co-injection of pVEC with radioiodinated bovine serum albumin (BSA) did not enhance the brain influx of radiodionated BSA, indicating that pVEC does not itself significantly alter the BBB properties. A saturable mechanism could not be demonstrated by co-injecting an excess dose of non-radiolabeled CPP. No significant regional differences in brain influx were observed, with the exception for pVEC, for which the regional variations were only marginal. The observed BBB influx transport properties cannot be correlated with their cell-penetrating ability, and therefore, good CPP properties do not imply efficient brain influx.
S. The non-stimulated and phorbol 12-myristate 13-acetate (PMA)-stimulated luminol-augmented cellular chemiluminescence (CL) response and viability of milk and blood polymorphonuclear leukocytes (PMN) were determined in lactating dairy cows during different stages of lactation. In the first study, ten healthy cows each in early, mid and late lactation were compared. In a second study, the same measurements as in the first study were evaluated longitudinally in 12 cows during 1 month following parturition. The CL activity and myeloperoxidase (MPO) content of milk PMN and macrophages (M) were also compared. Milk M did not possess MPO activity and were devoid of any luminol-enhanced CL. The CL activity of milk and blood PMN was significantly lower in early lactation than in mid and late lactation (P 0n001). Whereas little changes were observed in viability of blood PMN, the viability of milk PMN was lower in early lactation than in mid and late lactation (P 0n001). The percentage of PMN in isolated milk cells was also lower during early lactation than during mid and late lactation (P 0n001). The CL activity in response to PMA during early, mid and late lactation increased 13, 59 and 42-fold in blood PMN and 1n7, 2n6 and 2n4-fold in milk PMN, respectively, in comparison with non-stimulated PMN. The CL activity, both in milk and blood PMN, the milk PMN viability and the percentage of milk PMN were lowest between 3 d and 11 d post partum. These observed changes immediately after calving could contribute to a higher susceptibility to mastitis in that period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.