The relationship between inflammation and general health conditions in dairy cows and the link between inflammation, liver function, and fertility are poorly understood. To clarify these relationships, 120 multiparous dairy cows were followed throughout an entire lactation. Blood samples were collected during the first month of lactation for a metabolic profile, and milk yield, disease occurrence, and fertility parameters were monitored during the entire lactation. Twenty-four cows were culled, and another 19 were excluded because they had serious problems after 30 d in milk (DIM) and before the first insemination. The remaining 77 cows were pregnant at the end of lactation and were retrospectively grouped into quartiles based on liver activity index (LAI), which is based on plasma negative acute phase proteins. Cows in the lower (LO) and intermediate lower (INLO) quartiles of LAI had more severe inflammations with high concentrations of haptoglobin (0.77 and 0.61 g/L) and globulin (42.5 and 39.0 g/L), respectively, during the first week of lactation compared with cows in the upper (UP) and intermediate upper (INUP) quartiles of LAI (haptoglobin: 0.28 and 0.45 g/L, and globulin: 34.2 and 36.9 g/L, respectively). At 7 DIM, the cows in LO and INLO had greater bilirubinemia (8.7 and 10.5 vs. 6.3 microM/L in UP) and lower blood urea (3.5 and 3.7 vs. 4.1 mM in UP). The INLO group exhibited more days open (139 vs. 93) and services per pregnancy (2.68 vs. 1.65), but lower milk yield (38.3 vs. 40.8 kg/d at 28 DIM) compared with UP. The LO group did not have a significantly lower fertility status, but presented the lowest milk yield (34.1 kg/d at 28 DIM). Our data suggest that cows with lower LAI scores had a more pronounced inflammatory status during the first month of lactation, an impairment of usual hepatic functions (e.g., bilirubin clearance), and a larger negative energy balance. The same cows had poorer performance (lower milk yield and fertility) than cows with higher LAI scores. Overall data suggest that any effort to avoid the acute phase response in the transition period would be useful for optimizing the productive and reproductive performance of high-yielding dairy cows.
Paraoxonase (PON) is a liver protein with hydrolase activity that is released into the blood stream. Paraoxonase may serve as an index of liver function because it is drastically reduced in chronic liver damage. Sixty-seven periparturient dairy cows were used to evaluate the relationship between plasma PON, health problems, inflammatory conditions, and liver function. Baseline plasma PON concentrations during the first 30 d in milk (DIM) were retrospectively used to group cows into quartiles. Metabolic profile, lipid metabolites (e.g., nonesterified fatty acids, beta-hydroxybutyrate), inflammatory indices (haptoglobin, ceruloplasmin), low and high density lipoprotein cholesterol, vitamin A, vitamin E, reactive oxygen metabolites, total antioxidants, and PON in plasma were measured 2 wk before to 8 wk after calving. Weekly milk yield, body condition score, and all health problems were recorded. After parturition (7 DIM), cows in the lower PON group had the lowest plasma concentrations of negative acute phase proteins compared with the higher PON group for retinol binding protein (23.2 +/- 2.86 vs. 36.0 +/- 2.96 microg/dL of vitamin A), albumin (31.6 +/- 0.73 vs. 33.9 +/- 0.75 g/L), total cholesterol (2.04 +/- 0.30 vs. 2.45 +/- 0.42 mmol/L), and the highest concentrations of haptoglobin (0.67 vs. 0.24 +/- 0.03 g/L; positive acute phase protein) and globulins (37.2 vs. 32.3 +/- 1.4 g/L). Plasma bilirubin was highest in the cows (10.1 vs. 6.2 +/- 0.6 micromol/L) in the lowest PON quartile. Plasma PON was negatively correlated with haptoglobin (r = -0.39) and bilirubin (r = -0.42) and positively correlated with retinol binding protein (r = 0.54), albumin (r = 0.38), and cholesterol (r = 0.55) fractions. A total of 82.3% of cows in the lower quartile and no cows in the upper quartile experienced serious inflammation. Lower quartile cows produced 28.1 +/- 10.3 kg of milk/d; whereas upper quartile cows produced 38.3 +/- 7.7 kg of milk/d during the first 30 DIM. A reduction in the ability of the liver to cope with the increased metabolic demand near parturition in dairy cows can be diagnosed using changes in baseline plasma PON.
A 1000-cow study across four European countries was undertaken to understand to what extent ruminant microbiomes can be controlled by the host animal and to identify characteristics of the host rumen microbiome axis that determine productivity and methane emissions. A core rumen microbiome, phylogenetically linked and with a preserved hierarchical structure, was identified. A 39-member subset of the core formed hubs in co-occurrence networks linking microbiome structure to host genetics and phenotype (methane emissions, rumen and blood metabolites, and milk production efficiency). These phenotypes can be predicted from the core microbiome using machine learning algorithms. The heritable core microbes, therefore, present primary targets for rumen manipulation toward sustainable and environmentally friendly agriculture.
The onset of lactation in dairy cows is characterized by high output of methylated compounds in milk when sources of methyl group are in short supply. Methionine and choline (CHOL) are key methyl donors and their availability during this time may be limiting for milk production, hepatic lipid metabolism, and immune function. Supplementing rumen-protected Met and CHOL may improve overall performance and health of transition cows. The objective of this study was to evaluate the effect of supplemental rumen-protected Met and CHOL on performance and health of transition cows. Eighty-one multiparous Holstein cows were used in a randomized, complete, unbalanced block design with 2×2 factorial arrangement of Met (Smartamine M, Adisseo NA, Alpharetta, GA) and CHOL (ReaShure, Balchem Inc., New Hampton, NY) inclusion (with or without). Treatments (20 to 21 cows each) were control (CON), CON+Met (SMA), CON+CHOL (REA), and CON+Met+CHOL (MIX). From -50 to -21d before expected calving, all cows received the same diet (1.40Mcal of NE/kg of DM) with no Met or CHOL. From -21d to calving, cows received the same close-up diet (1.52Mcal of NE/kg of DM) and were assigned randomly to treatments (CON, SMA, REA, or MIX) supplied as top dresses. From calving to 30 DIM, cows were fed the same postpartal diet (1.71Mcal of NE/kg of DM) and continued to receive the same treatments through 30 DIM. The Met supplementation was adjusted daily at 0.08% DM of diet and REA was supplemented at 60g/d. Incidence of clinical ketosis and retained placenta tended to be lower in Met-supplemented cows. Supplementation of Met (SMA, MIX) led to greater DMI compared with other treatments (CON, REA) in both close-up (14.3 vs. 13.2kg/d, SEM 0.3) and first 30d postpartum (19.2 vs. 17.2kg/d, SEM 0.6). Cows supplemented with Met (SMA, MIX) had greater yields of milk (44.2 vs. 40.4kg/d, SEM 1.2), ECM (44.6 vs. 40.5kg/d, SEM 1.0), and FCM (44.6 vs. 40.8kg/d, SEM 1.0) compared with other (CON, REA) treatments. Milk fat content did not differ in response to Met or CHOL. However, milk protein content was greater in Met-supplemented (3.32% vs. 3.14%, SEM 0.04%) but not CHOL-supplemented (3.27 vs. 3.19%, SEM 0.04%) cows. Supplemental CHOL led to greater blood glucose and insulin concentrations with lower glucose:insulin ratio. No Met or CHOL effects were detected for blood fatty acids or BHB, but a Met × time effect was observed for fatty acids due to higher concentrations on d 20. Results from the present study indicate that peripartal supplementation of rumen-protected Met but not CHOL has positive effects on cow performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.