This paper develops a theoretical framework to shed light on variation in credit rating standards over time and across asset classes. Ratings issued by credit rating agencies serve a dual role: they provide information to investors and are used to regulate institutional investors. We show that introducing rating-contingent regulation that favors highly rated securities may increase or decrease rating informativeness, but unambiguously increases the volume of highly rated securities. If the regulatory advantage of highly rated securities is sufficiently large, delegated information acquisition is unsustainable, since the rating agency prefers to facilitate regulatory arbitrage by inflating ratings. Our model relates rating informativeness to the quality distribution of issuers, the complexity of assets, and issuers' outside options. We reconcile our results with the existing empirical literature and highlight new, testable implications, such as repercussions of the Dodd-Frank Act.
We propose a parsimonious model of bilateral trade under asymmetric information to shed light on the prevalence of intermediation chains that stand between buyers and sellers in many decentralized markets. Our model features a classic problem in economics where an agent uses his market power to inefficiently screen a privately informed counterparty. Paradoxically, involving moderately informed intermediaries also endowed with market power can improve trade efficiency. Long intermediation chains in which each trader's information set is similar to those of his direct counterparties limit traders' incentives to post prices that reduce trade volume and jeopardize gains to trade. (JEL D42, D82, D85, L12, L14)
This paper develops a theoretical framework to shed light on variation in credit rating standards over time and across asset classes. Ratings issued by credit rating agencies serve a dual role: they provide information to investors and are used to regulate institutional investors. We show that introducing rating-contingent regulation that favors highly rated securities may increase or decrease rating informativeness, but unambiguously increases the volume of highly rated securities. If the regulatory advantage of highly rated securities is sufficiently large, delegated information acquisition is unsustainable, since the rating agency prefers to facilitate regulatory arbitrage by inflating ratings. Our model relates rating informativeness to the quality distribution of issuers, the complexity of assets, and issuers' outside options. We reconcile our results with the existing empirical literature and highlight new, testable implications, such as repercussions of the Dodd-Frank Act. AbstractThis paper develops a theoretical framework to shed light on variation in credit rating standards over time and across asset classes. Ratings issued by credit rating agencies serve a dual role: they provide information to investors and are used to regulate institutional investors. We show that introducing rating-contingent regulation that favors highly rated securities may increase or decrease rating informativeness, but unambiguously increases the volume of highly rated securities. If the regulatory advantage of highly rated securities is sufficiently large, delegated information acquisition is unsustainable, since the rating agency prefers to facilitate regulatory arbitrage by inflating ratings. Our model relates rating informativeness to the quality distribution of issuers, the complexity of assets, and issuers' outside options. We reconcile our results with the existing empirical literature and highlight new, testable implications, such as repercussions of the Dodd-Frank Act.
Over-the-counter (OTC) markets attract substantial trading volume despite exhibiting frictions absent in centralized limit-order markets. We compare the efficiency of OTC and limit-order markets when traders’ expertise is endogenous. We show that asymmetric access to counterparties in OTC markets yields increased rents from expertise acquisition for a few well-connected core traders. When the existence of gains to trade is uncertain, traders’ higher expertise in OTC markets can improve allocative efficiency. In contrast, when expertise primarily causes adverse selection, competitive limit-order markets tend to dominate. Our model provides guidance for policy makers and empiricists evaluating the efficiency of market structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.