The spliceosome is a dynamic macromolecular machine that undergoes a series of conformational rearrangements as it transitions between the several states required for accurate splicing. The transition from the B to B is a key part of spliceosome assembly and is defined by the departure of several proteins, including essential U5 component Dib1. Recent structural studies suggest that Dib1 has a role in preventing premature spliceosome activation, as it is positioned adjacent to the U6 snRNA ACAGAGA and the U5 loop I, but its mechanism is unknown. Our data indicate that Dib1 is a robust protein that tolerates incorporation of many mutations, even at positions thought to be key for its folding stability. However, we have identified two temperature-sensitive mutants that stall in vitro splicing prior to the first catalytic step and block assembly at the B complex. In addition, Dib1 readily exchanges in splicing extracts despite being a central component of the U5 snRNP, suggesting that the binding site of Dib1 is flexible. Structural analyses show that the overall conformation of Dib1 and the mutants are not affected by temperature, so the temperature sensitive defects most likely result from altered interactions between Dib1 and other spliceosomal components. Together, these data lead to a new understanding of Dib1's role in the B to B transition and provide a model for how dynamic protein-RNA interactions contribute to the correct assembly of a complex molecular machine.
Fibrosis remains a significant cause of failure in implanted biomedical devices and early absorption of proteins on implant surfaces has been shown to be a key instigating factor. However, lipids can also regulate immune activity and their presence may also contribute to biomaterial‐induced foreign body responses (FBR) and fibrosis. Here it is demonstrated that the surface presentation of lipids on implant affects FBR by influencing reactions of immune cells to materials as well as their resultant inflammatory/suppressive polarization. Time‐of‐flight secondary ion mass spectroscopy (ToF‐SIMS) is employed to characterize lipid deposition on implants that are surface‐modified chemically with immunomodulatory small molecules. Multiple immunosuppressive phospholipids (phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin) are all found to deposit preferentially on implants with anti‐FBR surface modifications in mice. Significantly, a set of 11 fatty acids is enriched on unmodified implanted devices that failed in both mice and humans, highlighting relevance across species. Phospholipid deposition is also found to upregulate the transcription of anti‐inflammatory genes in murine macrophages, while fatty acid deposition stimulated the expression of pro‐inflammatory genes. These results provide further insights into how to improve the design of biomaterials and medical devices to mitigate biomaterial material‐induced FBR and fibrosis.
Real-time in vivo detection of biomarkers, particularly nitric oxide (NO), is of utmost importance for critical healthcare monitoring, therapeutic dosing, and fundamental understanding of NO's role in regulating many physiological processes. However, detection of NO in a biological medium is challenging due to its short lifetime and low concentration. Here, we demonstrate for the first time that photonic microring resonators (MRRs) can provide real-time, direct, and in vivo detection of NO in a mouse wound model. The MRR encodes the NO concentration information into its transfer function in the form of a resonance wavelength shift. We show that these functionalized MRRs, fabricated using complementary metal oxide semiconductor (CMOS) compatible processes, can achieve sensitive detection of NO (sub-μM) with excellent specificity and no apparent performance degradation for more than 24 h of operation in biological medium. With alternative functionalizations, this compact lab-on-chip optical sensing platform could support real-time in vivo detection of myriad of biochemical species.
Here we show how photonic microring resonators enable real-time detection of Nitric Oxide (NO) in vivo, which is critical for physiological monitoring particularly during the wound healing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.