Investigators use C(1) to C(4) substituted polycyclic aromatic hydrocarbons (PAH) to assess ecological risk and to track fossil fuels and related pollutants in the environment. To quantify these compounds gas chromatography/mass spectrometry (GC/MS) is used. This work demonstrates single ion monitoring (SIM) or extraction (SIE) of full scan data produces inaccurate and imprecise concentration estimates due to incorrect homologue peak assignments. Profiling of coal tar and crude oil by automated sequential GC-GC/MS provided the retention windows and spectral patterns for each homologue to correctly quantify these compounds. Simultaneous pulsed flame photometric (sulfur-specific) detection differentiated PAH from polycyclic aromatic sulfur heterocycles and their alkylated homologues when they eluted within the same retention windows and had common ions. Differences between SIE and spectral deconvolution of GC/MS data based on multiple fragmentation patterns per homologue ranged from a few percent for C(1) compounds to hundreds of percent for the higher alkylated homologues. Findings show current methods produce poor quality data adversely affecting forensic investigations, risk assessments, and weathering studies.
Polycyclic aromatic sulfur heterocycles (PASH) are ubiquitous in fossil fuels and pose risk to the environment due to their toxicity. Some PASH, resistant to degradation in the environment, are used to differentiate pollutant source and weathering. Although retention data exist for some PASH, few mass spectra are available, so misidentification often occurs between isomers in the same family. In this study, the retention behavior of 119 PASH on 14%-cyanopropyl/86%-polydimethylsiloxane (DB-1701ms), trifluoropropylmethylpolysiloxane (Rtx-200ms), 5%-phenyl/95%-dimethyl (Rxi-5ms), and 50%-diphenyl/50%-dimethyl (Rxi-17Sil-ms) are reported along with their mass spectra. This data is guiding on-going research aimed at identifying PASH in coal tar by multidimensional GC-GC/MS for compounds where standards are not available.
Polycyclic aromatic sulfur heterocycles (PASH) are sulfur analogues of polycyclic aromatic hydrocarbons (PAH). Alkylated PAH attract much attention as carcinogens, mutagens, and as diagnostics for environmental forensics. PASH, in contrast, are mostly ignored in the same studies due to the conspicuous absence of gas chromatography/mass spectrometry (GC/MS) retention times and fragmentation patterns. To obtain these data, eight coal tar and crude oils were analyzed by automated sequential GC-GC. Sample components separated based on their interactions with two different stationary phases. Newly developed algorithms deconvolved combinatorially selected ions to identify and quantify PASH in these samples. Simultaneous detection by MS and pulsed flame photometric detectors (PFPD) provided additional selectivity to differentiate PASH from PAH when coelution occurred. A comprehensive library of spectra and retention indices is reported for the C(1)-C(4) two-, three-, and four-ring PASH. Results demonstrate the importance of using multiple fragmentation patterns per homologue (MFPPH) compared to selected ion monitoring (SIM) or extraction (SIE) to identify isomers. Since SIM/SIE analyses dramatically overestimate homologue concentrations, MFPPH should be used to correctly quantify PASH for bioavailability, weathering, and liability studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.