Abstract-The Bitcoin system only provides eventual consistency. For everyday life, the time to confirm a Bitcoin transaction is prohibitively slow. In this paper we propose a new system, built on the Bitcoin blockchain, which enables strong consistency. Our system, PeerCensus, acts as a certification authority, manages peer identities in a peer-to-peer network, and ultimately enhances Bitcoin and similar systems with strong consistency. Our extensive analysis shows that PeerCensus is in a secure state with high probability. We also show how Discoin, a Bitcoin variant that decouples block creation and transaction confirmation, can be built on top of PeerCensus, enabling real-time payments. Unlike Bitcoin, once transactions in Discoin are committed, they stay committed.
In Bitcoin, transaction malleability describes the fact that the signatures that prove the ownership of bitcoins being transferred in a transaction do not provide any integrity guarantee for the signatures themselves. This allows an attacker to mount a malleability attack in which it intercepts, modifies, and rebroadcasts a transaction, causing the transaction issuer to believe that the original transaction was not confirmed. In February 2014 MtGox, once the largest Bitcoin exchange, closed and filed for bankruptcy claiming that attackers used malleability attacks to drain its accounts. In this work we use traces of the Bitcoin network for over a year preceding the filing to show that, while the problem is real, there was no widespread use of malleability attacks before the closure of MtGox.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.