A set of 19 silicon-bridged C 2 -symmetric zirconocenes rac-R′ 2 Si(2-Me-4-R-indenyl) 2 ZrCl 2 of varying steric demand in position 4 were synthesized and screened in propene homopolymerization in a high-throughput experimental setup. The size and accuracy of the experimental data set allow to identify surprisingly good correlations among stereoselectivity, regioselectivity, and molecular weight capability (R 2 ≈ 0.8−0.9) over a broad range. We rationalize this trend by assuming that steric tuning in the 4-position affects both preferred insertion and stereoerror formation similarly but leaves other barriers largely unaffected. A quantitative structure−activity relationship based on one single computational descriptor, Δ%V Bur using the difference in the percent of buried volume between the "blocked" and "open" quadrants of the catalyst precursoris established. Provided that a large sphere of 5.0 Å is used, stereoselectivity can be predicted with unprecedented accuracy, i.e., a mean average deviation (MAD) of 0.18 kcal/mol (ΔΔG ‡ enantio ), 0.0007 (σ, probability that the preferred propene enantioface is selected at an active site of given chirality), or 0.3% (mmmm pentads). On the basis of this empirical model, we predicted that the catalyst with R = o-tolyl is an ideal candidate for high stereoselectivity/high MW capability. Ad hoc synthesis and testing of the precursor confirmed the expectations: the catalyst shows the highest stereoselectivity reported so far (σ = 0.9999) for metallocenes at 60 °C, while maintaining a high MW capability (M w > 1 MDa) and relatively high regioselectivity.
Compared to heterogenous Ziegler–Natta systems (ZNS), ansa-metallocene catalysts for the industrial production of isotactic polypropylene feature a higher cost-to-performance balance. In particular, the C2-symmetric bis(indenyl) ansa-zirconocenes disclosed in the 1990s are complex to prepare, less stereo- and/or regioselective than ZNS, and lose performance at practical application temperatures. The golden era of these complexes, though, was before High Throughput Experimentation (HTE) could contribute significantly to their evolution. Herein, we illustrate a Quantitative Structure – Activity Relationship (QSAR) model trained on a robust and highly accurate HTE database. The clear-box QSAR model utilizes, in particular, a limited number of chemically intuitive 3D geometric descriptors that screen various regions of space in and around the catalytic pocket in a modular way thus enabling to quantify individual substituent contributions. The main focus of the paper is on the methodology, which should be of rather broad applicability in molecular organometallic catalysis. Then again, it is worth emphasizing that the specific application reported here led us to identify in a comparatively short time novel zirconocene catalysts rivaling or even outperforming all previous homologues which strongly indicates that the metallocene story is not over yet.
Quenched-flow data for propene polymerization with rac-Me2Si(2-Me-4-Ph-1-indenyl)2ZrCl2/MAO support a picture where removal of MAO qualitatively changes the kinetic profile from a mainly enthalpic to a mainly entropic barrier. DFT studies suggest that a not previously recognized singly-bridged end-on coordination mode of Me6Al2 to catalytically active centers may be kinetically relevant as a resting state. In contrast, the more traditional doubly-bridged complex of Me3Al is proposed to be more relevant to chain transfer to cocatalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.