BackgroundA method of individually assessing former exposure to asbestos fibres is a precondition of risk-differentiated health surveillance. The main aims of our study were to assess former levels of airborne asbestos exposure in the power industry in Germany and to propose a basic strategy for health surveillance and the early detection of asbestos related diseases.MethodsBetween March 2002 and the end of 2006, we conducted a retrospective questionnaire based survey of occupational tasks and exposures with airborne asbestos fibres in a cohort of 8632 formerly asbestos exposed power industry workers. The data on exposure and occupation were entered into a specially designed computer programme, based on ambient monitoring of airborne asbestos fibre concentrations. The cumulative asbestos exposure was expressed as the product of the eight-hour time weighted average and the total duration of exposure in fibre years (fibres/cubic centimetre-years).ResultsData of 7775 (90% of the total) participants working in installations for power generation, power distribution or gas supply could be evaluated. The power generation group (n = 5284) had a mean age of 56 years, were exposed for 20 years and had an average cumulative asbestos exposure of 42 fibre years. The occupational group of "metalworkers" (n = 1600) had the highest mean value of 79 fibre years. The corresponding results for the power distribution group (n = 2491) were a mean age of 45 years, a mean exposure duration of 12 years and an average cumulative asbestos exposure of only 2.5 fibre years. The gas supply workers (n = 512) had a mean age of 54 years and a mean duration of exposure of 15 years.ConclusionsWhile the surveyed cohort as a whole was heavily exposed to asbestos dust, the power distribution group had a mean cumulative exposure of only 6% of that found in the power generation group. Based on the presented data, risk-differentiated disease surveillance focusing on metalworkers and electricians from the power generating industry seems justified. That combined with a sensitive examination technique would allow detecting asbestos related diseases early and efficiently.
BackgroundTo determine the prevalence of asbestos-related changes on chest X-ray (CXR) and low-dose multidetector-row CT (MDCT) of the thorax in a cohort of formerly asbestos-exposed power industry workers and to assess the importance of common risk factors associated with specific radiological changes.MethodsTo assess the influence of selected risk factors (age, time since first exposure, exposure duration, cumulative exposure and pack years) on typical asbestos-related radiographic changes, we employed multiple logistic regression and receiver operating characteristic (ROC) analysis.ResultsOn CXR, pleural changes and asbestosis were strongly associated with age, years since first exposure and exposure duration. The MDCT results showed an association between asbestosis and age and between plaques and exposure duration, years since first exposure and cumulative exposure. Parenchymal changes on CXR and MDCT, and diffuse pleural thickening on CXR were both associated with smoking. Using a cut-off of 55 years for age, 17 years for exposure duration and 28 years for latency, benign radiological changes in the cohort with CXR could be predicted with a sensitivity of 82.0% for all of the three variables and a specificity of 47.4%, 39.0% and 40.6%, respectively.ConclusionsParticipants aged 55 years and older and those with an asbestos exposure of at least 17 years or 28 years since first exposure should be seen as having an increased risk of abnormal radiological findings. For implementing a more focused approach the routine use of low-dose MDCT rather than CXR at least for initial examinations would be justified.
Our results confirm the well-known correlation between lung function, smoking habits, and BMI. However, we found no significant association between lung function and asbestos exposure.
BackgroundHealth surveillance of formerly asbestos exposed individuals focus on early detection of asbestos related diseases, such as lung fibrosis (asbestosis), pleural plaques, mesothelioma and lung cancer in particular. One main concern is the early and clear identification of lesions with a high risk of malignant changes and their undelayed clinical work-up. False positive results may lead to unnecessary and often painful diagnostic interventions, which create high costs when applied to a large cohort and also may discredit the whole program. We describe an unusual presentation of a common lesion among asbestos exposed individuals, which has to our knowledge never been described before. Being aware of this pathological pathway may prevent inadequate clinical decisions with disadvantages for the patient. Underlying implications regarding health surveillance and the reading of CT-scans of the thorax are important for the management of formerly asbestos exposed individuals.Case presentationDuring follow-up of an asbestos exposed 72 year old former power plant worker with known pleural changes, a nodule located next to the left costophrenic angle was newly discovered on CT-scan. As the previous scan 1 year before did not show any changes in that area, a fast growing tumour was suspected and an immediate biopsy performed. The tissue showed the characteristics of a pleural plaque with no signs of malignancy. After carefully reviewing all previous radiographs a rounded opacity attached to the mediastinal pleura close to the oesophagus and slightly cranial to the position of the removed nodule could be discerned. That nodule had increased in size over several years and was no longer visible on the latest scan. It appeared that the originally slow growing plaque had migrated to the costophrenic angle some time before it was discovered in the latest scan thus imposing as a fast growing tumour.ConclusionsWe concluded that asbestos related pleural plaques can under special circumstances get separated from the pleura and migrate to another position in the pleural cavity. The case provides new insights in the development and properties of pleural lesions and may offer new options for the management of formerly asbestos exposed patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.