Spectral imaging technology, which records simultaneously spectral and spatial information about an object, was initially developed for remote sensing and has since been successfully applied to other areas of research. Although relatively new to the field of conservation, this non-invasive method of investigation has already provided promising results in the analysis of paintings and written documents, the characterization of materials and digital documentation. This article reviews the published literature relating to the application of multispectral and hyperspectral imaging for the study and conservation of works of art and presents some new perspectives offered by this innovative and fast-developing technology.
The rapid progression in digital hardware and signal processing capabilities stimulates the development of radar systems. The tendency is to move the digital interface toward the antenna, replacing, whenever possible, analog RF-hardware. Based on software codes, these digital systems are more flexible and easier to reconfigure than RF-hardware. This letter illustrates the general concept for digital beamforming (DBF) in synthetic aperture radar systems and investigates their principle capabilities, limitations, and performance parameters. It is shown that using DBF a simultaneous improvement in azimuth coverage and resolution can be achieved.Index Terms-Digital beamforming, digital radar, digital synthetic aperture radar (SAR), software-defined radar sensors.
We describe the design of the Field-Imaging Far-Infrared Line Spectrometer (FIFI-LS), operated as a Facility-Class instrument on the Stratospheric Observatory for Infrared Astronomy (SOFIA). FIFI-LS is an imaging spectrometer for medium resolution spectroscopy. Since being commissioned in 2014, it has performed over 50 SOFIA commissioning and science flights. After operating as a principal investigator instrument in 2014 and early 2015, it was accepted as a Facility Science Instrument in 2015. In addition to the description of the design, we report on the in-flight performance and the concept of operation. We also provide an overview of the science opportunities with FIFI-LS and describe how FIFI-LS observations complement and complete observations with the PACS instrument on the Herschel observatory.
We present a [C ii] 158 µm map of the entire M51 (including M51b) grand-design spiral galaxy observed with the FIFI-LS instrument on SOFIA. We compare the [C ii] emission with the total far-infrared (TIR) intensity and star formation rate (SFR) surface density maps (derived using Hα and 24µm emission) to study the relationship between [C ii] and the star formation activity in a variety of environments within M51 on scales of 16 corresponding to ∼660 pc. We find that [C ii] and the SFR surface density are well correlated in the central, spiral arm, and inter-arm regions. The correlation is in good agreement with that found for a larger sample of nearby galaxies at kpc scales. We find that the SFR, and [C ii] and TIR luminosities in M51 are dominated by the Pineda, J.L. et al.extended emission in M51's disk. The companion galaxy M51b, however, shows a deficit of [C ii] emission compared with the TIR emission and SFR surface density, with [C ii] emission detected only in the S-W part of this galaxy. The [C ii] deficit is associated with an enhanced dust temperature in this galaxy. We interpret the faint [C ii] emission in M51b to be a result of suppressed star formation in this galaxy, while the bright midand far-infrared emission, which drive the TIR and SFR values, are powered by other mechanisms. A similar but less pronounced effect is seen at the location of the black hole in M51's center. The observed [C ii] deficit in M51b suggests that this galaxy is a valuable laboratory to study the origin of the apparent [C ii] deficit observed in ultra-luminous galaxies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.