Spectral imaging technology, which records simultaneously spectral and spatial information about an object, was initially developed for remote sensing and has since been successfully applied to other areas of research. Although relatively new to the field of conservation, this non-invasive method of investigation has already provided promising results in the analysis of paintings and written documents, the characterization of materials and digital documentation. This article reviews the published literature relating to the application of multispectral and hyperspectral imaging for the study and conservation of works of art and presents some new perspectives offered by this innovative and fast-developing technology.
Archeological campaigns along the track of the Domitian road in Cuma resulted in the recovery of a large amount of potshards and crucible fragments (both open and closed forms), covered with residues of blue and green frits, respectively. Typological analysis of the crucibles combined with mineralogical and petrological analyses on the ceramic body and frit residues revealed that the forms are intimately related to the technological data. Newly formed calcium silicates indicate high firing treatments of crucibles during pigment making (not lower than 950°C). In particular, different working temperatures for the two types of crucibles have been estimated by the presence/absence of sodalite‐nosean feldspathoid. This mineral formed after the reaction of Si‐Al‐rich material (the sintered ceramic body) and alkalis transferred to ceramics via chemical diffusion during the pigment synthesis. Thus, the estimated working temperatures are higher for closed forms (>1100°C) and lower for the open ones (950–1050°C). This different thermal treatment perfectly fits with the temperatures of green and blue pigment synthesis; higher temperatures for green pigments allowed the formation of abundant Cu‐bearing glassy phase, whereas, blue pigment is prone to the formation and thermal stability of cuprorivaite crystals (950–1050°C). Moreover, the two frits showed similar recipes (quartz‐feldspar‐calcite‐rich sand) with the exception of more abundant Cu‐bearing colorant agent in blue hue and higher proportion of alkaline flux in green frit. The obtained data suggested that crucibles were a fundamental tool for pigment manufacturing, likely one of the best example of ancient technical ceramics, as they permitted controlling the temperatures along with the fuel and the treatment time. Combining analytical and archeological data, the production and the technology of the two colored compounds identified as Egyptian Blue and Green frits in ancient Cuma has been inferred. Finally, considering the Vitruvius excerpt that identified an Egyptian Blue production in Puteoli, the area of production can be widen up to the northern Phlegraean Fields, also including Cumae and Liternum.
Macroscale multimodal chemical imaging combining hyperspectral diffuse reflectance (400–2500 nm), luminescence (400–1000 nm), and X-ray fluorescence (XRF, 2 to 25 keV) data, is uniquely equipped for noninvasive characterization of heterogeneous complex systems such as paintings. Here we present the first application of multimodal chemical imaging to analyze the production technology of an 1,800-year-old painting and one of the oldest surviving encaustic (“burned in”) paintings in the world. Co-registration of the data cubes from these three hyperspectral imaging modalities enabled the comparison of reflectance, luminescence, and XRF spectra at each pixel in the image for the entire painting. By comparing the molecular and elemental spectral signatures at each pixel, this fusion of the data allowed for a more thorough identification and mapping of the painting’s constituent organic and inorganic materials, revealing key information on the selection of raw materials, production sequence and the fashion aesthetics and chemical arts practiced in Egypt in the second century AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.