There is substantial interest in the role of plant secondary metabolites as protective dietary agents. In particular, the involvement of flavonoids and related compounds has become a major topic in human nutrition research. Evidence from epidemiological and human intervention studies is emerging regarding the protective effects of various (poly)phenol-rich foods against several chronic diseases, including neurodegeneration, cancer and cardiovascular diseases. In recent years, the use of HPLC-MS for the analysis of flavonoids and related compounds in foods and biological samples has significantly enhanced our understanding of (poly)phenol bioavailability. These advancements have also led to improvements in the available food composition and metabolomic databases, and consequently in the development of biomarkers of (poly)phenol intake to use in epidemiological studies. Efforts to create adequate standardised materials and well-matched controls to use in randomised controlled trials have also improved the quality of the available data. In vitro investigations using physiologically achievable concentrations of (poly)phenol metabolites and catabolites with appropriate model test systems have provided new and interesting insights on potential mechanisms of actions. This article will summarise recent findings on the bioavailability and biological activity of (poly)phenols, focusing on the epidemiological and clinical evidence of beneficial effects of flavonoids and related compounds on urinary tract infections, cognitive function and age-related cognitive decline, cancer and cardiovascular disease.
Chemoprevention has come of age as an effective cancer control modality; however, the search for novel agent(s) for the armamentarium of cancer chemoprevention continues. We argue that agents capable of intervening at more than one critical pathway in the carcinogenesis process will have greater advantage over other single-target agents. Pomegranate fruit extract (PFE) derived from the tree Punica granatum possesses strong antioxidant and antiinflammatory properties. Pomegranate fruit was extracted with acetone and analyzed based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and found to contain anthocyanins, ellagitannins and hydrolyzable tannins. We evaluated whether PFE possesses antitumor-promoting effects. We first determined the effect of topical application of PFE to CD-1 mice against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced conventional markers and other novel markers of skin tumor promotion. We found that topical application of PFE (2 mg/mouse) 30 min prior to TPA (3.2 nmole/mouse) application on mouse skin afforded significant inhibition, in a time-dependent manner, against TPA-mediated increase in skin edema and hyperplasia, epidermal ornithine decarboxylase (ODC) activity and protein expression of ODC and cyclooxygenase-2. We also found that topical application of PFE resulted in inhibition of TPA-induced phosphorylation of ERK1/2, p38 and JNK1/2, as well as activation of NF-B and IKK␣ and phosphorylation and degradation of I B␣. We next assessed the effect of skin application of PFE on TPA-induced skin tumor promotion in 7,12-dimethylbenz(a)anthracene-initiated CD-1 mouse. The animals pretreated with PFE showed substantially reduced tumor incidence and lower tumor body burden when assessed as total number of tumors per group, percent of mice with tumors and number of tumors per animal as compared to animals that did not receive PFE. In TPA-treated group, 100% of the mice developed tumors at 16 weeks on test, whereas at this time in PFE-treated group, only 30% mice exhibited tumors. Skin application of PFE prior to TPA application also resulted in a significant delay in latency period from 9 to 14 weeks and afforded protection when tumor data were considered in terms of tumor incidence and tumor multiplicity. The results of our study provide clear evidence that PFE possesses antiskintumor-promoting effects in CD-1 mouse. Because PFE is capable of inhibiting conventional as well as novel biomarkers of TPAinduced tumor promotion, it may possess chemopreventive activity in a wide range of tumor models. Thus, an in-depth study to define active agent(s) in PFE capable of affording antitumorpromoting effect is warranted.
The 4-(dimethylamino)cinnamaldehyde (DMAC) assay is currently used to quantify proanthocyanidin (PAC) content in cranberry products. However, this method suffers from issues of accuracy and precision in the analysis and comparison of PAC levels across a broad range of cranberry products. Current use of procyanidin A2 as a standard leads to an underestimation of PACs content in certain cranberry products, especially those containing higher molecular weight PACs. To begin to address the issue of accuracy, a method for the production of a cranberry PAC standard, derived from an extraction of cranberry (c-PAC) press cake, was developed and evaluated. Use of the c-PAC standard to quantify PAC content in cranberry samples resulted in values that were 2.2 times higher than those determined by procyanidin A2. Increased accuracy is critical for estimating PAC content in relationship to research on authenticity, efficacy, and bioactivity, especially in designing clinical trials for determination of putative health benefits.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was employed to characterize the polygalloyl polyflavan-3-ols (PGPF) in grape seed extracts. Masses corresponding to a series of PGPF units inclusive of nonamers were observed in the positive-ion reflectron mode. Masses of PGPF inclusive of undecamers were observed in the positive-ion linear mode, providing the first known evidence of PGPF of this size. Soluble PGPF of grape seed extracts were precipitated by complexation with Yb(3+). The PGPF were then recovered by dissolving the precipitate in water and removing the Yb(3+) by a weakly acidic cation-exchange resin (Amberlite IRP-64). Comparisons of HPLC chromatograms of the crude grape seed extract prior to precipitation with Yb(3+) and after recovery of the PGPF indicated that 96% of the phenolic compounds were precipitated and 99% of the precipitated PGPF were recovered by cation-exchange resin. These results indicate that MALDI-TOF MS is able to determine the mass distribution of complex mixtures of oligomeric PGPF and that precipitation of PGPF by Yb(3+) is useful for isolation and quantification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.