Posttranscriptional gene silencing (PTGS) in plants resuits from the degradation of mRNAs and shows phenomenological similarities with quelling in fungi and RNAi in animals. Here, we report the isolation of sgs2 and sgs3 Arabidopsis mutants impaired in PTGS. We establish a mechanistic link between PTGS, quelling, and RNAi since the Arabidopsis SGS2 protein is similar to an RNA-dependent RNA polymerase like N. crassa QDE-1, controlling quelling, and C. elegans EGO-1, controlling RNAi. In contrast, SGS3 shows no significant similarity with any known or putative protein, thus defining a specific step of PTGS in plants. Both sgs2 and sgs3 mutants show enhanced susceptibility to virus, definitively proving that PTGS is an antiviral defense mechanism that can also target transgene RNA for degradation.
Transgene-induced post-transcriptional gene silencing (PTGS) results from specific degradation of RNAs that are homologous with the transgene transcribed sequence. This phenomenon, also known as cosuppression in plants and quelling in fungi, resembles RNA interference (RNAi) in animals. Indeed, cosuppression/quelling/RNAi require related PAZ/PIWI proteins (AGO1/QDE-2/RDE-1), indicating that these mechanisms are related. Unlike Neurospora crassa qde-2 and Caenorhabditis elegans rde-1 mutants, which are morphologically normal, the 24 known Arabidopsis ago1 mutants display severe developmental abnormalities and are sterile. Here, we report the isolation of hypomorphic ago1 mutants, including fertile ones. We show that these hypomorphic ago1 mutants are defective for PTGS, like null sgs2, sgs3, and ago1 mutants, suggesting that PTGS is more sensitive than development to perturbations in AGO1. Conversely, a mutation in ZWILLE/PINHEAD, another member of the Arabidopsis AGO1 gene family, affects development but not PTGS. Similarly, mutations in ALG-1 and ALG-2, two members of the C. elegans RDE-1 gene family, affect development but not RNAi, indicating that the control of PTGS/RNAi and development by PAZ/PIWI proteins can be uncoupled. Finally, we show that hypomorphic ago1 mutants are hypersensitive to virus infection, confirming the hypothesis that in plants PTGS is a mechanism of defense against viruses.
Aerobic organisms have to maintain a reduced cellular redox environment in the face of the prooxidative conditions of aerobic life. The incomplete reduction of oxygen to water during respiration leads to the formation of redox-active oxygen intermediates such as the superoxide anion radical (O 2 . ), hydrogen peroxide (H 2 O 2 ), and the hydroxyl radical (for review see Refs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.