Mexican Tequila is one of the most demanded import spirits in Europe. Its fast-raising worldwide request makes counterfeiting a profitable activity affecting both consumers and legal distillers. In this paper, a sensor-based methodology based on a combination of infrared measurements (IR) and multivariate data analysis (MVA) is presented. The case study is about differentiating two categories of white Tequila: pure Tequila (or ‘100% agave’) and mixed Tequila (or simply, Tequila). The IR spectra were treated and fused with a low-level approach. Exploratory data analysis was performed using PCA and partial least squares (PLS), whilst the authentication analyses were carried out with PLS-discriminant analysis (DA) and soft independent modeling for class analogy (SIMCA) models. Results demonstrated that data fusion of IR spectra enhanced the outcomes of the authentication models capable of differentiating pure from mixed Tequilas. In fact, PLS-DA presented the best results which correctly classified all fifteen commercial validation samples. The methodology thus presented is fast, cheap, and of simple application in the Tequila industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.