Proline (Pro) accumulation is a common physiological response in many plants in response to a wide range of biotic and abiotic stresses. Controversy has surrounded the possible role(s) of proline accumulation. In this review, knowledge on the regulation of Pro metabolism during development and stress, results of genetic manipulation of Pro metabolism and current debate on Pro toxicity in plants are presented.
Contents Summary 759 Hyperaccumulation: the phenomenon 759 Macroevolution of hyperaccumulation 760 Microevolution of hyperaccumulation: variation within hyperaccumulator species 760 Genetic analysis of trace metal accumulation and tolerance 761 Mechanisms of trace metal accumulation 762 General discussion and research perspectives 769 Acknowledgements 772 References 772 Summary Metal hyperaccumulator plants accumulate and detoxify extraordinarily high concentrations of metal ions in their shoots. Metal hyperaccumulation is a fascinating phenomenon, which has interested scientists for over a century. Hyperaccumulators constitute an exceptional biological material for understanding mechanisms regulating plant metal homeostasis as well as plant adaptation to extreme metallic environments. Our understanding of metal hyperaccumulation physiology has recently increased as a result of the development of molecular tools. This review presents key aspects of our current understanding of plant metal – in particular cadmium (Cd), nickel (Ni) and zinc (Zn) – hyperaccumulation.
Abstract. Ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of nitrous acid (HONO) and its precursor NO 2 (nitrogen dioxide) as well as aerosols have been performed daily in Beijing city centre (39.98 • N, 116.38 • E) from July 2008 to April 2009 and at the suburban site of Xianghe (39.75 • N, 116.96 • E) located ∼ 60 km east of Beijing from March 2010 to December 2012. This extensive dataset allowed for the first time the investigation of the seasonal cycle of HONO as well as its diurnal variation in and in the vicinity of a megacity. Our study was focused on the HONO and NO 2 near-surface concentrations (0-200 m layer) and total vertical column densities (VCDs) and also aerosol optical depths (AODs) and extinction coefficients retrieved by applying the Optimal Estimation Method to the MAX-DOAS observations. Monthly averaged HONO near-surface concentrations at local noon display a strong seasonal cycle with a maximum in late fall/winter (∼ 0.8 and 0.7 ppb at Beijing and Xianghe, respectively) and a minimum in summer (∼ 0.1 ppb at Beijing and 0.03 ppb at Xianghe). The seasonal cycles of HONO and NO 2 appear to be highly correlated, with correlation coefficients in the 0.7-0.9 and 0.5-0.8 ranges at Beijing and Xianghe, respectively. The stronger correlation of HONO with NO 2 and also with aerosols observed in Beijing suggests possibly larger role of NO 2 conversion into HONO in the Beijing city center than at Xianghe. The observed diurnal cycle of HONO near-surface concentration shows a maximum in the early morning (about 1 ppb at both sites) likely resulting from night-time accumulation, followed by a decrease to values of about 0.1-0.4 ppb around local noon. The HONO / NO 2 ratio shows a similar pattern with a maximum in the early morning (values up to 0.08) and a decrease to ∼ 0.01-0.02 around local noon. The seasonal and diurnal cycles of the HONO near-surface concentration are found to be similar in shape and in relative amplitude to the corresponding cycles of the HONO total VCD and are therefore likely driven mainly by the balance between HONO sources and the photolytic sink, whereas dilution effects appear to play only a minor role. The estimation of OH radical production from HONO and O 3 photolysis based on retrieved HONO near-surface concentrations and calculated photolysis rates indicate that in the 0-200 m altitude range, HONO is by far the largest source of OH radicals in winter as well as in the early morning at all seasons, while the contribution of O 3 dominates in summer from mid-morning until mid-afternoon.
We report on the retrieval of aerosol extinction profiles at four wavelengths from ground-based multi-axis differential absorption spectroscopy (MAXDOAS) measurements performed in Beijing, China. Measurements were made over a 10-month time period (June 2008 to April 2009) using a newly developed MAXDOAS instrument. A retrieval algorithm, based on an on-line implementation of the radiative transfer code LIDORT and the optimal estimation technique, has been designed to provide near real time information on aerosol extinction vertical profiles. The algorithm was applied to O<sub>4</sub> measurements at four wavelengths (360, 477, 577, and 630 nm). The total aerosol optical depths (AODs) calculated from the retrieved profiles exhibit higher values in spring and summer and lower values in autumn and winter. Comparison of the retrieved total AODs with values from a co-located CIMEL sunphotometer revealed a good correlation. The best results are obtained for the UV region with a correlation coefficient (<I>R</I>) of 0.91 and a slope of the linear regression fit of 1.1. At the longest wavelength, <I>R</I> drops down to 0.67 and the slope increases to 1.5. The results confirm that good quality O<sub>4</sub> slant column measurements are essential for the success of the retrievals. A method is presented to determine a correction factor to account for systematic errors. It is demonstrated that the algorithm is capable of reliably retrieving aerosol extinction profiles for a wide range of atmospheric conditions (total AODs at 360 nm ranging from about 0.1 to 3). The results open up new perspectives for the extension of the algorithm for the near real time retrieval of trace gas vertical profiles
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.