We give an overview of the SImulation of X-ray TElescopes (SIXTE) software package, a generic, mission-independent Monte Carlo simulation toolkit for X-ray astronomical instrumentation. The package is based on a modular approach for the source definition, the description of the optics, and the detector type such that new missions can be easily implemented. The targets to be simulated are stored in a flexible input format called SIMPUT. Based on this source definition, a sample of photons is produced and then propagated through the optics. In order to model the detection process, the software toolkit contains modules for various detector types, ranging from proportional counter and Si-based detectors, to more complex descriptions like transition edge sensor (TES) devices. The implementation of characteristic detector effects and a detailed modeling of the read-out process allow for representative simulations and therefore enable the analysis of characteristic features, such as for example pile-up, and their impact on observations. We present an overview of the implementation of SIXTE from the input source, the imaging, and the detection process, highlighting the modular approach taken by the SIXTE software package. In order to demonstrate the capabilities of the simulation software, we present a selection of representative applications, including the all-sky survey of eROSITA and a study of pile-up effects comparing the currently operating XMM-Newton with the planned Athena-WFI instrument. A simulation of a galaxy cluster with the Athena-X-IFU shows the capability of SIXTE to predict the expected performance of an observation for a complex source with a spatially varying spectrum and our current knowledge of the future instrument.
The X-ray Integral Field Unit (X-IFU) is the high resolution X-ray spectrometer of the ESA Athena X-ray observatory. Over a field of view of 5' equivalent diameter, it will deliver X-ray spectra from 0.2 to 12 keV with a spectral resolution of 2.5 eV up to 7 keV on ∼ 5" pixels. The X-IFU is based on a large format array of super-conducting molybdenum-gold Transition Edge Sensors cooled at ∼ 90 mK, each coupled with an absorber made of gold and bismuth with a pitch of 249 µm. A cryogenic anti-coincidence detector located underneath the prime TES array enables the non X-ray background to be reduced. A bath temperature of ∼ 50 mK is obtained by a series of mechanical coolers combining 15K Pulse Tubes, 4K and 2K Joule-Thomson coolers which pre-cool a sub Kelvin cooler made of a 3 He sorption cooler coupled with an Adiabatic Demagnetization Refrigerator. Frequency domain multiplexing enables to read out 40 pixels in one single channel. A photon interacting with an absorber leads to a current pulse, amplified by the readout electronics and whose shape is reconstructed on board to recover its energy with high accuracy. The defocusing capability offered by the Athena movable mirror assembly enables the X-IFU to observe the brightest X-ray sources of the sky (up to Crab-like intensities) by spreading the telescope point spread function over hundreds of pixels. Thus the X-IFU delivers low pile-up, high throughput (> 50%), and typically 10 eV spectral resolution at 1 Crab intensities, i.e. a factor of 10 or more better than Silicon based X-ray detectors. In this paper, the current X-IFU baseline is presented, together with an assessment of its anticipated performance in terms of spectral resolution, background, and count rate capability. The X-IFU baseline configuration will be subject to a preliminary requirement review that is scheduled at the end of 2018.The X-IFU will be provided by an international consortium led by France, the Netherlands and Italy, with further ESA member state contributions from Belgium,
Novae are caused by runaway thermonuclear burning in the hydrogen-rich envelopes of accreting white dwarfs, which results in the envelope to expand rapidly and to eject most of its mass 1,2 . For more than 30 years, nova theory has predicted the existence of a "fireball" phase following directly the runaway fusion, which should be observable as a short, bright, and soft X-ray flash before the nova becomes visible in the optical 3,4,5 . Here we present the unequivocal detection of an extremely bright and very soft X-ray flash of the classical Galactic nova YZ Reticuli 11 hours prior to its 9 mag optical brightening. No X-ray source was detected 4 hours before and after the event, constraining the duration of the flash to shorter than 8 hours. In agreement with theoretical predictions 4,6,7,8 , the source's spectral shape is consistent with a black body of 3.27 +0.11 −0.33 × 10 5 K (28.2 +0.9 −2.8 eV), or a white dwarf atmosphere, radiating at the Eddington luminosity, with a photosphere that is only slightly larger than a typical white dwarf. This detection of the expanding white dwarf photosphere before the ejection of the envelope provides the last link of the predicted photospheric lightcurve evolution and opens a new window to measure the total nova energetics.
The limitations of the current biorefinery process utilizing stirred-tank reactors for the enzymatic step include poor mixing in the case of high biomass loadings, additional steps for the product separation, and a long reaction time. In this study the hydrothermal pretreatment and the enzymatic hydrolysis of the lignocellulosic biomass were combined in one fixed-bed reactor. The influence of the shear forces during recirculation and enzyme stability at elevated temperatures were investigated. It has been shown that the shear forces resulting from pumping have a negligible effect on enzyme activity. However, large pressure drops reduce the enzyme activity significantly. Furthermore, the enzyme stability was significantly increased at elevated temperatures (60°C) by applying static pressures up to 200 bar (56% residual activity at 60°C after 24 h). This is beneficial for the process as a higher temperature accelerates the reaction. Further improvement of the overall process efficiency was achieved by increasing the solid-to-water ratio and circulation of the enzyme solution. At a biomass content of 7%, a glucose concentration of 61 g l-1 and a yield of 85% was achieved. The integrated process was first done on a laboratory scale (50 ml). At 100 bar, 60°C and 10% biomass loading an increased initial reaction rate was observed. However, this effect was followed by the stagnation of the glucose yield as one of the enzymes, Novozyme 188, showed no remarkable stabilization with pressure. Nevertheless, an overall glucose yield of 40% was achieved after 5.5 h, compared to 14 h under normal pressure and 50°C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.