A fundamental understanding of ion charge storage in nanoporous electrodes is essential to improve the performance of supercapacitors or devices for capacitive desalination. Here, we employ in situ X-ray transmission measurements on activated carbon supercapacitors to study ion concentration changes during electrochemical operation. Whereas counter-ion adsorption was found to dominate at small electrolyte salt concentrations and slow cycling speed, ion replacement prevails for high molar concentrations and/or fast cycling. Chronoamperometry measurements reveal two distinct time regimes of ion concentration changes. In the first regime the supercapacitor is charged, and counter- and co-ion concentration changes align with ion replacement and partially co-ion expulsion. In the second regime, the electrode charge remains constant, but the total ion concentration increases. We conclude that the initial fast charge neutralization in nanoporous supercapacitor electrodes leads to a non-equilibrium ion configuration. The subsequent, charge-neutral equilibration slowly increases the total ion concentration towards counter-ion adsorption.
A new carbon model derived from in situ small-angle X-ray scattering (SAXS) enables a quantitative description of the voltage-dependent arrangement and transport of ions within the nanopores of carbon-based electric double-layer capacitors. In the first step, ex situ SAXS data for nanoporous carbon-based electrodes are used to generate a three-dimensional real-space model of the nanopore structure using the concept of Gaussian random fields. This pore model is used to derive important pore size characteristics, which are cross-validated against the corresponding values from gas sorption analysis. In the second step, simulated in situ SAXS patterns are generated after filling the model pore structure with an aqueous electrolyte and rearranging the ions via a Monte Carlo simulation for different applied electrical potentials. These simulated SAXS patterns are compared with in situ SAXS patterns recorded during voltage cycling. Experiments with different cyclic voltammetry scan rates revealed a systematic time lag between ion transport processes and the applied voltage signal. Global transport into and out of nanopores was found to be faster than the accommodation of the local equilibrium arrangement in favor of sites with a high degree of confinement.
Dimensional changes in carbon-based supercapacitor electrodes were investigated using a combination of electrochemical dilatometry and in situ small-angle X-ray scattering. A novel hierarchical carbon material with ordered mesoporosity was synthesized, providing the unique possibility to track electrode expansion and shrinkage on the nanometer scale and the macroscopic scale simultaneously. Two carbons with similar mesopore structure but different amounts of micropores were investigated, employing two different aqueous electrolytes. The strain of the electrodes was always positive, but asymmetric with respect to positive and negative applied voltages. The asymmetry strongly increased with increasing microporosity, giving hints to the possible physical origin of electrosorption induced pore swelling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.