Many exciting discoveries have recently revealed the versatility of RNA and its importance in a variety of functions within the cell. Since the structural features of RNA are of major importance to their biological function, there is much interest in predicting RNA structure, either in free form or in interaction with various ligands, including proteins, metabolites and other molecules. In recent years, an increasing number of researchers have developed novel RNA algorithms for predicting RNA secondary and tertiary structures. In this review, we describe current experimental and computational advances and discuss recent ideas that are transforming the traditional view of RNA folding. To evaluate the performance of the most recent RNA 3D folding algorithms, we provide a comparative study in order to test the performance of available 3D structure prediction algorithms for an RNA data set of 43 structures of various lengths and motifs. We find that the algorithms vary widely in terms of prediction quality across different RNA lengths and topologies; most predictions have very large root mean square deviations from the experimental structure. We conclude by outlining some suggestions for future RNA folding research.
RNA secondary structures can be divided into helical regions composed of canonical Watson-Crick and related basepairs, as well as single-stranded regions such as hairpin loops, internal loops, and junctions. These elements function as building blocks in the design of diverse RNA molecules with various fundamental functions in the cell. To better understand the intricate architecture of threedimensional RNAs, we analyze existing RNA 4-way junctions in terms of basepair interactions and three-dimensional configurations. Specifically, we identify nine broad junction families according to coaxial stacking patterns and helical configurations. We find that helices within junctions tend to arrange in roughly parallel and perpendicular patterns, and stabilize their conformations using common tertiary motifs like coaxial stacking, loop-helix interaction, and helix packing interaction. Our analysis also reveals a number of highly conserved basepair interaction patterns and novel tertiary motifs such as A-minor-coaxial stacking combinations and sarcin/ricin motif variants. Such analyses of RNA building blocks can ultimately help in the difficult task of RNA 3D structure prediction.
RNA molecules are important cellular components involved in many fundamental biological processes. Understanding the mechanisms behind their functions requires RNA tertiary structure knowledge. While modeling approaches for the study of RNA structures and dynamics lag behind efforts in protein folding, much progress has been achieved in the past two years. Here, we review recent advances in RNA folding algorithms, RNA tertiary motif discovery, applications of graph theory approaches to RNA structure and function, and in silico generation of RNA sequence pools for aptamer design. Advances within each area can be combined to impact many problems in RNA structure and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.