Building a 3D geological model from field and subsurface data is a typical task in geological studies involving natural resource evaluation and hazard assessment. However, there is quite often a gap between research papers presenting case studies or specific innovations in 3D modeling and the objectives of a typical class in 3D structural modeling, as more and more is implemented at universities. In this paper, we present general procedures and guidelines to effectively build a structural model made of faults and horizons from typical sparse data. Then we describe a typical 3D structural modeling workflow based on triangulated surfaces. Our goal is not to replace software user guides, but to provide key concepts, principles, and procedures to be applied during geomodeling tasks, with a specific focus on quality control. Electronic supplementary materialThe online version of this article (http://dx
International audienceThe terrigeneous sediment budget of passive margin basins records variations in continental relief triggered by either deformation or climate. Consequently, it becomes a major challenge to determine sediment accumulation histories in a large number of basins found in various geodynamic contexts. In this study, we developed a GIS-based method to determine the sediment budget at the scale of a whole basin (from the upstream continental onlap to the most distal deepest marine deposits) and the associated uncertainties. The volume of sediments preserved in the basin for each time interval was estimated by interpolation between cross-sections and then corrected from in situ production and porosity to obtain terrigeneous solid volumes. This approach was validated by applying it to Namibia-South African passive margin basins for which independent data are available. We determined by a statistical approach the variances associated with each parameter of the method: the geometrical extrapolation of the section (8-43%), the uncertainties on seismic velocities for the depth conversion (2-10%), on the absolute ages of stratigraphic horizons (0.2-12%), on the carbonate content (0.2-46%) and on remaining porosities estimation (3-5%). Our estimates of the accumulated volumes were validated by comparison with previous estimates at a lower temporal resolution in the same area. We discussed variations in accumulation rates observed in terms of relief variations triggered by climate and/or deformation. The high accumulation rates determined for the Lower Cretaceous, progressively decreasing to a minimum in the Mid-Cretaceous, are consistent with the progressive relaxation of a rift-related relief. The following increase to an Upper Cretaceous maximum is consistent with a major relief reorganization driven either by an uplift and/or a change to more humid climate conditions. The lower accumulation rate in the Cenozoic suggests a relief reorganization of lesser amplitude over that period
International audienceThe development of the Alpine mountain belt has been governed by the convergence of the African and European plates since the Late Cretaceous. During the Cenozoic, this orogeny was accompanied with two major kinds of intraplate deformation in the NW-European foreland: (1) the European Cenozoic Rift System (ECRIS), a left-lateral transtensional wrench zone striking NNE-SSW between the western Mediterranean Sea and the Bohemian Massif; (2) long-wavelength lithospheric folds striking NE and located between the Alpine front and the North Sea. The present-day geometry of the European crust comprises the signatures of these two events superimposed on all preceding ones. In order to better define the processes and causes of each event, we identify and separate their respective geometrical signatures on depth maps of the pre-Mesozoic basement and of the Moho. We derive the respective timing of rifting and folding from sedimentary accumulation curves computed for selected locations of the Upper Rhine Graben. From this geometrical and chronological separation, we infer that the ECRIS developed mostly from 37 to 17 Ma, in response to north-directed impingement of Adria into the European plate. Lithospheric folds developed between 17 and 0 Ma, after the azimuth of relative displacement between Adria and Europe turned counter-clockwise to NW SE. The geometry of these folds (wavelength = 270 km; amplitude = 1,500 m) is consistent with the geometry, as predicted by analogue and numerical models, of buckle folds produced by horizontal shortening of the whole lithosphere. The development of the folds resulted in ca. 1,000 m of rock uplift along the hinge lines of the anticlines (Burgundy Swabian Jura and Normandy Vogelsberg) and ca. 500 m of rock subsidence along the hinge line of the intervening syncline (Sologne Franconian Basin). The grabens of the ECRIS were tilted by the development of the folds, and their rift-related sedimentary infill was reduced on anticlines, while sedimentary accumulation was enhanced in synclines. We interpret the occurrence of Miocene volcanic activity and of topographic highs, and the basement and Moho configurations in the Vosges Black Forest area and in the Rhenish Massif as interference patterns between linear lithospheric anticlines and linear grabens, rather than as signatures of asthenospheric plumes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.