Genome-scale metabolic models (GEMs) represent extensive knowledgebases that provide a platform for model simulations and integrative analysis of omics data. This study introduces Yeast8 and an associated ecosystem of models that represent a comprehensive computational resource for performing simulations of the metabolism of Saccharomyces cerevisiae––an important model organism and widely used cell-factory. Yeast8 tracks community development with version control, setting a standard for how GEMs can be continuously updated in a simple and reproducible way. We use Yeast8 to develop the derived models panYeast8 and coreYeast8, which in turn enable the reconstruction of GEMs for 1,011 different yeast strains. Through integration with enzyme constraints (ecYeast8) and protein 3D structures (proYeast8DB), Yeast8 further facilitates the exploration of yeast metabolism at a multi-scale level, enabling prediction of how single nucleotide variations translate to phenotypic traits.
Several studies have shown that neither the formal representation nor the functional requirements of genome-scale metabolic models (GEMs) are precisely defined. Without a consistent standard, comparability, reproducibility, and interoperability of models across groups and software tools cannot be guaranteed.Here, we present memote (https://github.com/opencobra/memote) an open-source software containing a community-maintained, standardized set of me tabolic mo del te sts. The tests cover a range of aspects from annotations to conceptual integrity and can be extended to include experimental datasets for automatic model validation. In addition to testing a model once, memote can be configured to do so automatically, i.e., while building a GEM. A comprehensive report displays the model's performance parameters, which supports informed model development and facilitates error detection.Memote provides a measure for model quality that is consistent across reconstruction platforms and analysis software and simplifies collaboration within the community by establishing workflows for publicly hosted and version controlled models.A. Richelle: Lilly Innovation Fellowship Award B. García-Jiménez and J.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.