IntroductionLiver dysfunction can derive from severe sepsis and might be associated with poor prognosis. However, diagnosis of septic liver dysfunction is challenging due to a lack of appropriate tests. Measurement of maximal liver function capacity (LiMAx test) has been successfully evaluated as a new diagnostic test in liver resection and transplantation. The aim of this study was to evaluate the LiMAx test during sepsis in comparison to biochemical tests and the indocyanin green test (ICG-PDR).MethodsWe prospectively investigated 28 patients (8 female and 20 male, age range 35 to 80 years) suffering from sepsis on a surgical ICU. All patients received routine resuscitation from septic shock (surgery, fluids, catecholamines, antibiotic drugs). The first LiMAx test and ICG-PDR were carried out within the first 24 hours after onset of septic symptoms, followed by day 2, 5 and 10. Other biochemical parameters and scores determining the severity of illness were measured daily. Clinical outcome parameters were examined after 90 days or at the end of treatment. The population was divided into 2 groups (group A: non-survivors or ICU length of stay (ICU-LOS) >30 days versus group B: survivors and ICU-LOS <30 days) for analysis.ResultsEpidemiological baseline characteristics of both groups were similar. Group A patients had significant lower LiMAx and ICG-PDR values than patients in group B. Determination of ICG-PDR by finger probe failed in 14.3% of tests due to insufficient peripheral pulses. Respiratory, renal and hepatic dysfunction (LiMAx and ICG-PDR) were associated with prolonged ICU-LOS. Only LiMAx <100 μg/kg/h and respiratory dysfunction were associated with increased mortality. For LiMAx <100 μg/kg/h receiver operating characteristic-analysis revealed a 100% sensitivity and 77% specificity for death.ConclusionsSepsis-related hepatic dysfunction can be diagnosed early and effectively by the LiMAx test. The extent of LiMAx impairment is predictive for patient morbidity and mortality. The sensitivity and specificity of the LiMAx test was superior to that of ICG-PDR regarding the prediction of mortality.
Prone position during ECMO is safe and improves oxygenation even after repositioning. This might ameliorate hypoxemia and reduce the harm from mechanical ventilation.
The diagnosis of acute cellular rejection (ACR) after liver transplantation is based on histological analysis of biopsies because noninvasive biomarkers for allograft rejection are not yet established for clinical routines. CD31, CD44, and chemokine (C-X-C motif) ligand (CXCL) 9 have previously been described as biomarkers for cross-organ allograft rejection. Here, we assessed the predictive and diagnostic value of these proteins as serum biomarkers for clinically significant ACR in the first 6 months after liver transplantation in a prospective study. The protein levels were measured in 94 patients immediately before transplantation, at postoperative days (PODs) 1, 3, 7, and 14 and when biopsies were performed during episodes of biochemical graft dysfunction. The CD44 serum protein levels were significantly lower at POD 1 in patients who experienced histologically proven ACR in the follow-up compared with patients without ACR (P < 0.001). CXCL9 was significantly higher before transplantation (P 5 0.049) and at POD 1 (P < 0.001) in these patients. Low CD44 values (cutoff, <200.5 ng/mL) or high CXCL9 values (cutoff, >2.7 ng/mL) at POD 1 differentiated between rejection and no rejection with a sensitivity of 88% or 60% and a specificity of 61% or 79%, respectively. The combination of both biomarker cutoffs at POD 1 had a positive predictive value of 91% and a negative predictive value of 67% for clinically significant ACR. Moreover, CD44 was significantly lower at the time of ACR (P < 0.001) and differentiated the rejection group from patients with graft dysfunction due to other reasons. Our results suggest that CD44 and CXCL9 may serve as predictive biomarkers to identify liver allograft recipients at risk for clinically significant ACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.