Sliding friction between the tip of a friction force microscope and NaCl(100) was studied to deduce the velocity dependence of friction forces on the atomic scale. A logarithmic dependence of the mean friction force is revealed at low velocities. The experimental data are interpreted in terms of a modified Tomlinson model which is based on reaction rate theory.
Atomically resolved dynamic force microscopy ͑DFM͒ images of step and kink sites of NaCl films grown on the Cu͑111͒ surface are presented. Combining experimental results with an atomistic modeling of DFM imaging, we study the mechanism of contrast formation and extract more information about the tip and NaCl film structure. The experimental results and theoretical modeling systematically demonstrate the enhanced interaction of step and kink sites of one kind with the tip. This is explained by the enhanced gradient of the electrostatic potential at low-coordinated surface sites, and considerable displacements of the step edge and kink atoms from their sites due to the interaction with the tip upon approach. The theoretical analysis predicts that the silicon tip is effectively an insulator, and that the NaCl island cannot be thicker than two monolayers. We discuss the shape and chemical structure of the tip and the mechanism of damping during DFM imaging.
Sharpening of optical spectra caused by commensurate growth of an organic adlayer on salt single crystals is reported. The structure is elucidated by atomic force microscopy and advanced potential energy calculations. Continued deposition or annealing induces a rearrangement of the molecular monolayer into 3D crystallites, demonstrating the crucial role of the Coulomb interaction with the substrate to form the unexpected commensurate structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.