Using the concept of inner integral curves defined by Hirschowitz we
generalize a recent result by Kim, Levenberg and Yamaguchi concerning the
obstruction of a pseudoconvex domain spread over a complex homogeneous manifold
to be Stein. This is then applied to study the holomorphic reduction of
pseudoconvex complex homogeneous manifolds X=G/H. Under the assumption that G
is solvable or reductive we prove that X is the total space of a G-equivariant
holomorphic fiber bundle over a Stein manifold such that all holomorphic
functions on the fiber are constant.Comment: 21 page
We systematically study Schottky group actions on homogeneous rational
manifolds and find two new families besides those given by Nori's well-known
construction. This yields new examples of non-K\"ahler compact complex
manifolds having free fundamental groups. We then investigate their analytic
and geometric invariants such as the Kodaira and algebraic dimension, the
Picard group and the deformation theory, thus extending results due to
L\'arusson and to Seade and Verjovsky. As a byproduct, we see that the Schottky
construction allows to recover examples of equivariant compactifications of
SL(2,C)/\Gamma for \Gamma a discrete free loxodromic subgroup of SL(2,C),
previously obtained by A. Guillot.Comment: 30 pages; minor modifications, references have been added; to appear
in Journal f\"ur die reine und angewandte Mathematik (Crelle's Journal
Abstract. We consider actions of reductive complex Lie groups G = K C on Kähler manifolds X such that the K-action is Hamiltonian and prove then that all G-orbits are locally closed in X. This is used to characterize reductive homogeneous Kähler manifolds in terms of their isotropy subgroups. Moreover we show that such manifolds admit K-moment maps if and only if their isotropy groups are algebraic.
18 pagesNous étudions l'action d'un groupe réel-réductif $G=K\exp(\lie{p})$ sur une sous-variété réel-analytique $X$ d'une variété kählérienne $Z$. Nous supposons que l'action de $G$ peut être prolongée à une action holomorphe du groupe complexifié $G^\mbb{C}$ telle que l'action d'un sous-groupe maximal compact de $G^\mbb{C}$ soit hamiltonienne. L'application moment $\mu$ induit une application gradient $\mu_\lie{p}\colon X\to\lie{p}$. Nous montrons que $\mu_\lie{p}$ separe les orbites de $K$ si et seulement si un sous-groupe minimal parabolique de $G$ possède une orbite ouverte dans $X$. Ce résultat généralise la charactérisation de Brion des variétés kählériennes sphériques qui admettent une application moment
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.