We study the action of a real reductive group G on a real submanifold X of a Kähler manifold Z. We suppose that the action of G extends holomorphically to an action of the complexified group G C and that with respect to a compatible maximal compact subgroup U of G C the action on Z is Hamiltonian. There is a corresponding gradient map µ p : X → p * where g = k ⊕ p is a Cartan decomposition of g. We obtain a Morse-like function η p := µ p 2 on X. Associated with critical points of η p are various sets of semistable points which we study in great detail. In particular, we have G-stable submanifolds S β of X which are called pre-strata. In cases where µ p is proper, the pre-strata form a decomposition of X and in cases where X is compact they are the strata of a Morse-type stratification of X. Our results are generalizations of results of Kirwan obtained in the case where G = U C and X = Z is compact.
Abstract. We consider actions of real Lie subgroups G of complex reductive Lie groups on Kählerian spaces. Our main result is the openness of the set of semistable points with respect to a momentum map and the action of G.
18 pagesNous étudions l'action d'un groupe réel-réductif $G=K\exp(\lie{p})$ sur une sous-variété réel-analytique $X$ d'une variété kählérienne $Z$. Nous supposons que l'action de $G$ peut être prolongée à une action holomorphe du groupe complexifié $G^\mbb{C}$ telle que l'action d'un sous-groupe maximal compact de $G^\mbb{C}$ soit hamiltonienne. L'application moment $\mu$ induit une application gradient $\mu_\lie{p}\colon X\to\lie{p}$. Nous montrons que $\mu_\lie{p}$ separe les orbites de $K$ si et seulement si un sous-groupe minimal parabolique de $G$ possède une orbite ouverte dans $X$. Ce résultat généralise la charactérisation de Brion des variétés kählériennes sphériques qui admettent une application moment
Abstract. We prove a version of the Chevalley Restriction Theorem for the action of a real reductive group G on a topological space X which locally embeds into a holomorphic representation. Assuming that there exists an appropriate quotient X/ /G for the G-action, we introduce a stratification which is defined with respect to orbit types of closed orbits. Our main result is a description of the quotient X/ /G in terms of quotients by normalizer subgroups associated to the stratification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.