Thermally conductive composites with a temperature-triggered self-healing response were produced by dispersing boron nitride or graphite particles into two types of polysulphide-based thermoset matrices. The composites produced exhibit recovery of both cohesion and adhesion properties upon thermally activated healing. Using a mild healing temperature (65°C), the materials show full recovery of their initial adhesive strength during multiple healing cycles. The composites behave differently regarding the cohesion recovery: 20%–100% recovery is achieved depending on the filler type, filler loading and the type of matrix. The thermal conductivity of the composites increases with the amount of filler. Values of 1 and 2 W/m K can be achieved for the boron nitride and graphite-based composite, respectively. The results presented in this work clearly show that multifunctional materials with different functionalities and mechanical self-healing responses can be designed using this strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.