Synthetic systems with intrinsic self-repairing or self-healing abilities have emerged during the past decade. In this work, the influence of the cross-linker and chain rigidity on the healing ability of thermoset rubbers containing disulfide bonds have been investigated. The produced materials exhibit adhesive and cohesive self-healing properties. The recovery of these two functionalities upon the thermally triggered healing events has shown to be highly dependent on the network cross-link density and chain rigidity. As a result, depending on the rubber thermoset intrinsic physical properties, the thermal mending leading to full cohesive recovery can be achieved in 20-300 min at a modest healing temperature of 65 °C. The adhesive strength ranges from 0.2 to 0.5 MPa and is fully recovered even after multiple failure events.
This paper presents the results of design, manufacturing and characterization of Vaporizing Liquid Microthrusters (VLM) with integrated heaters and temperature sensing. The thrusters use water as the propellant and are designed for use in CubeSats and PocketQubes. The devices are manufactured using silicon based MEMS (Micro Electro Mechanical Systems) technology and include resistive heaters to vaporize the propellant. The measurements of the heaters' resistances are used to estimate the temperature in the vaporizing chamber. The manufacturing process is described as well as the characterization of the thrusters' structural and electrical elements. In total 12 devices with different combinations of heaters and nozzles have been assessed and four of them have been used to demonstrate the successful operation of the thrusters. Results show a performance close to the design parameters and are used to validate the thrusters.
performance and potential operational issues. Results of numerical simulations conducted to optimize the design of the heating and expansion slots, as well as a detailed description of the manufacturing steps for the conventional micro-resistojet concept, are presented. Some intended steps for future research activities, including options for thrust intensity and direction control, are briefly introduced.
Thermally conductive composites with a temperature-triggered self-healing response were produced by dispersing boron nitride or graphite particles into two types of polysulphide-based thermoset matrices. The composites produced exhibit recovery of both cohesion and adhesion properties upon thermally activated healing. Using a mild healing temperature (65°C), the materials show full recovery of their initial adhesive strength during multiple healing cycles. The composites behave differently regarding the cohesion recovery: 20%–100% recovery is achieved depending on the filler type, filler loading and the type of matrix. The thermal conductivity of the composites increases with the amount of filler. Values of 1 and 2 W/m K can be achieved for the boron nitride and graphite-based composite, respectively. The results presented in this work clearly show that multifunctional materials with different functionalities and mechanical self-healing responses can be designed using this strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.