We have purified distinct complexes of nine to 12 proteins [referred to as BRG1‐associated factors (BAFs)] from several mammalian cell lines using an antibody to the SWI2‐SNF2 homolog BRG1. Microsequencing revealed that the 47 kDa BAF is identical to INI1. Previously INI1 has been shown to interact with and activate human immunodeficiency virus integrase and to be homologous to the yeast SNF5 gene. A group of BAF47‐associated proteins were affinity purified with antibodies against INI1/BAF47 and were found to be identical to those co‐purified with BRG1, strongly indicating that this group of proteins associates tightly and is likely to be the mammalian equivalent of the yeast SWI‐SNF complex. Complexes containing BRG1 can disrupt nucleosomes and facilitate the binding of GAL4‐VP16 to a nucleosomal template similar to the yeast SWI‐SNF complex. Purification of the complex from several cell lines demonstrates that it is heterogeneous with respect to subunit composition. The two SWI‐SNF2 homologs, BRG1 and hbrm, were found in separate complexes. Certain cell lines completely lack BRG1 and hbrm, indicating that they are not essential for cell viability and that the mammalian SWI‐SNF complex may be tailored to the needs of a differentiated cell type.
Several of the SNF and SWI genes of Saccharomyces cerevisiae code for proteins believed to assist transcriptional activators by relieving nucleosome repression. One of these proteins, SNF2/SWI2, has a homologue in Drosophila, a regulator of homeotic genes known as brahma or brm. In this report, we show that a counterpart of SNF2/SWI2 also exists in mice and humans. The human protein, designated hbrm, is a 180 kDa nuclear factor that can function as a transcriptional activator when fused to a heterologous DNA binding domain. The mouse homologue of hbrm is expressed in all mouse organs tested while hbrm was detected in some but not all investigated human cell lines. In cells failing to express the endogenous gene, transfected hbrm cooperates with the glucocorticoid receptor (GR) in transcriptional activation. However, hbrm had no effect on the activity of several other transcription factors, including the homeoprotein HNF‐1. The co‐operation between hbrm and GR required the DNA binding domain of GR and two separated regions of the hbrm protein, including a domain with homology to known helicases.
The SWI/SNF (mating-type switch/sucrose nonfermenting) complex involved in chromatin remodeling on promoters has also been detected on the coding region of genes. Here we show that SWI/SNF can function as a regulator of alternative splicing. We found that the catalytic subunit Brm favors inclusion of variant exons in the mRNA of several genes, including E-cadherin, BIM, cyclin D1 and CD44. Consistent with this, Brm associates with several components of the spliceosome and with Sam68, an ERK-activated enhancer of variant exon inclusion. Examination of the CD44 gene revealed that Brm induced accumulation of RNA polymerase II (RNAPII) with a modified CTD phosphorylation pattern on regions encoding variant exons. Altogether, our data suggest that on genes regulated by SWI/SNF, Brm contributes to the crosstalk between transcription and RNA processing by decreasing RNAPII elongation rate and facilitating recruitment of the splicing machinery to variant exons with suboptimal splice sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.