The transcriptional adaptor protein Gcn5 has been identified as a nuclear histone acetyltransferase (HAT). Although recombinant yeast Gcn5 efficiently acetylates free histones, it fails to acetylate histones contained in nucleosomes, indicating that additional components are required for acetylation of chromosomal histones. We report here that Gcn5 functions as a catalytic subunit in two high-molecular-mass native HAT complexes, with apparent molecular masses of 0.8 and 1.8 megadalton (MD), respectively, which acetylate nucleosomal histones. Both the 0.8-and 1.8-MD Gcn5-containing complexes cofractionate with Ada2 and are lost in gcn5A, ada2A, or ada3A yeast strains, illustrating that these HAT complexes are bona fide native Ada-transcriptional adaptor complexes. Importantly, the 1.8-MD adaptor/HAT complex also contains Spt gene products that are linked to TATA-binding protein (TBP) function. This complex is lost in spt20/ada5A and spt7A strains and Spt3, Spt7, Spt20/Ada5, Ada2, and Gcn5 all copurify with this nucleosomal HAT complex. Therefore, the 1.8-MD adaptor/HAT complex illustrates an interaction between Ada and Spt gene products and confirms the existence of a complex containing the TBP group of Spt proteins as demonstrated by genetic and biochemical studies. We have named this novel transcription regulatory complex SAGA (_Spt-Ada-Gcn5-Acetyltransferase). The function of Gcn5 as a histone acetyltransferase within the Ada and SAGA adaptor complexes indicates the importance of histone acetylation during steps in transcription activation mediated by interactions with transcription activators and general transcription factors (i.e., TBP).[Key Words." Acetyltransferase; nucleosome; transcription; Spt; Ada; Gcn5] Received March 28, 1997; revised version accepted May 15, 1997.Chromatin structure has an intricate role in the regulation of eukaryotic gene transcription. Nucleosomes suppress basal transcription initiation in vivo and in vitro increasing the dependence of transcription on the function of sequence-specific activator proteins (for review, see Grunstein 1990; Owen-Hughes and Workman 1994). Chromatin structures are remodeled before or during transcription activation generating DNase I hypersensitive regions (DHSs) at transcription control elements (Hager et al. 1995;Steger and Workman 1996;Svaren and Horz 1996). Multiprotein complexes have been impliSCorresponding authors.
Members of the ING family of tumor suppressors regulate cell cycle progression, apoptosis, and DNA repair as important cofactors of p53. ING1 and ING3 are stable components of the mSin3A HDAC and Tip60/NuA4 HAT complexes, respectively. We now report the purification of the three remaining human ING proteins. While ING2 is in an HDAC complex similar to ING1, ING4 associates with the HBO1 HAT required for normal progression through S phase and the majority of histone H4 acetylation in vivo. ING5 fractionates with two distinct complexes containing HBO1 or nucleosomal H3-specific MOZ/MORF HATs. These ING5 HAT complexes interact with the MCM helicase and are essential for DNA replication to occur during S phase. Our data also indicate that ING subunits are crucial for acetylation of chromatin substrates. Since INGs, HBO1, and MOZ/MORF contribute to oncogenic transformation, the multisubunit assemblies characterized here underscore the critical role of epigenetic regulation in cancer development.
Dynamic regulation of diverse nuclear processes is intimately linked to covalent modifications of chromatin. Much attention has focused on methylation at lysine 4 of histone H3 (H3K4), owing to its association with euchromatic genomic regions. H3K4 can be mono-, di- or tri-methylated. Trimethylated H3K4 (H3K4me3) is preferentially detected at active genes, and is proposed to promote gene expression through recognition by transcription-activating effector molecules. Here we identify a novel class of methylated H3K4 effector domains--the PHD domains of the ING (for inhibitor of growth) family of tumour suppressor proteins. The ING PHD domains are specific and highly robust binding modules for H3K4me3 and H3K4me2. ING2, a native subunit of a repressive mSin3a-HDAC1 histone deacetylase complex, binds with high affinity to the trimethylated species. In response to DNA damage, recognition of H3K4me3 by the ING2 PHD domain stabilizes the mSin3a-HDAC1 complex at the promoters of proliferation genes. This pathway constitutes a new mechanism by which H3K4me3 functions in active gene repression. Furthermore, ING2 modulates cellular responses to genotoxic insults, and these functions are critically dependent on ING2 interaction with H3K4me3. Together, our findings establish a pivotal role for trimethylation of H3K4 in gene repression and, potentially, tumour suppressor mechanisms.
ATP-dependent chromatin-remodeling complexes are known to facilitate transcriptional activation by opening chromatin structures. We report a novel human complex, named NURD, which contains not only ATP-dependent nucleosome disruption activity, but also histone deacetylase activity, which usually associates with transcriptional repression. The deacetylation is stimulated by ATP on nucleosomal templates, suggesting that nucleosome disruption aids the deacetylase to access its substrates. One subunit of NURD was identified as MTA1, a metastasis-associated protein with a region similar to the nuclear receptor core-pressor, N-CoR; and antibodies against NURD partially relieve transcriptional repression by thyroid hormone receptor. These results suggest that ATP-dependent chromatin remodeling can participate in transcriptional repression by assisting repressors in gaining access to chromatin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.